The wrong statement is that sound waves created vibration Option A.
<h3>What are sound waves?</h3>
Sound is a type of waves that moves in compressions and rare factions. This implies that sound is a mechanical wave. Recall that a mechanical wave is one that requires a material medium for propagation. Now we know that if we set the medium into vibration, that is when the sound waves begins to vibrate. That brings us to the idea that it is the vibration that causes the sound waves and not the sound waves that creates the vibration.
Thus, knowing that sound is a mechanical wave which moves through solids liquids and gas and that the vibration of the source of sound is what causes the air to vibrate, we conclude that the wrong statement is that sound waves created vibration Option A.
Learn more about sound waves:brainly.com/question/11797560
#SPJ1
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature
![\\T_{avg} = \frac{T_1 + T_2}{2} \\\\T_{avg} = \frac{500 + 25}{2} \\\\T_{avg} = 262.5](https://tex.z-dn.net/?f=%5C%5CT_%7Bavg%7D%20%3D%20%5Cfrac%7BT_1%20%2B%20T_2%7D%7B2%7D%20%5C%5C%5C%5CT_%7Bavg%7D%20%3D%20%5Cfrac%7B500%20%2B%2025%7D%7B2%7D%20%5C%5C%5C%5CT_%7Bavg%7D%20%3D%20262.5)
262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K ![\approx 550K](https://tex.z-dn.net/?f=%5Capprox%20550K)
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s
![P_r = 0.63](https://tex.z-dn.net/?f=P_r%20%3D%200.63)
A)
Number for the first strips is equal to
![R_e_x = \frac{u_o.L}{v}](https://tex.z-dn.net/?f=R_e_x%20%3D%20%5Cfrac%7Bu_o.L%7D%7Bv%7D)
![R_e_x = \frac{2\times 0.01}{47.57 \times 10^-^6 }\\\\= 420.4](https://tex.z-dn.net/?f=R_e_x%20%3D%20%5Cfrac%7B2%5Ctimes%200.01%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%20%7D%5C%5C%5C%5C%3D%20420.4)
Calculating heat transfer coefficient from the first strip
![h_1 = \frac{k}{L} \times 0.664 \times R_e_x^1^/^2 \times P_r^1^/^3](https://tex.z-dn.net/?f=h_1%20%3D%20%5Cfrac%7Bk%7D%7BL%7D%20%5Ctimes%200.664%20%5Ctimes%20R_e_x%5E1%5E%2F%5E2%20%5Ctimes%20P_r%5E1%5E%2F%5E3)
![h_1 = \frac{43.9 \times 10^-^3}{0.01} \times 0.664\times420 \times 4^1^/^2 \times 0.683^1^/^3\\\\= 52.6W/km^2](https://tex.z-dn.net/?f=h_1%20%3D%20%5Cfrac%7B43.9%20%5Ctimes%2010%5E-%5E3%7D%7B0.01%7D%20%5Ctimes%200.664%5Ctimes420%20%5Ctimes%204%5E1%5E%2F%5E2%20%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2052.6W%2Fkm%5E2)
The rate of convection heat transfer from the first strip is
![q_1 = h_1\times(L\times d)\times(T_1 - T_2)\\\\q_1 = 52.6 \times (0.01\times0.2)\times(500-25)\\\\q_1 = 50W](https://tex.z-dn.net/?f=q_1%20%3D%20h_1%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%28T_1%20-%20T_2%29%5C%5C%5C%5Cq_1%20%3D%2052.6%20%5Ctimes%20%280.01%5Ctimes0.2%29%5Ctimes%28500-25%29%5C%5C%5C%5Cq_1%20%3D%2050W)
The rate of convection heat transfer from the fifth trip is equal to
![q_5 = (5 \times h_o_-_5-4\times h_o_-_4) \times(L\times d)\times (T_1 -T_2)](https://tex.z-dn.net/?f=q_5%20%3D%20%285%20%5Ctimes%20h_o_-_5-4%5Ctimes%20h_o_-_4%29%20%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%20%28T_1%20-T_2%29)
![h_o_-_5 = \frac{k}{5L} \times 0.664 \times (\frac{u_o\times 5L}{v} )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.05} \times0.664\times (\frac{2 \times 0.05}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 25.5W/Km^2](https://tex.z-dn.net/?f=h_o_-_5%20%3D%20%5Cfrac%7Bk%7D%7B5L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%205L%7D%7Bv%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.05%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.05%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2025.5W%2FKm%5E2)
Calculating ![h_o_-_4](https://tex.z-dn.net/?f=h_o_-_4)
![h_o_-_4 = \frac{k}{4L} \times 0.664 \times (\frac{u_o\times 4L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.04} \times0.664\times (\frac{2 \times 0.04}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 26.3W/Km^2](https://tex.z-dn.net/?f=h_o_-_4%20%3D%20%5Cfrac%7Bk%7D%7B4L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%204L%7D%7Bv%20%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.04%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.04%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2026.3W%2FKm%5E2)
The rate of convection heat transfer from the tenth strip is
![q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)](https://tex.z-dn.net/?f=q_1_0%20%3D%20%2810%20%5Ctimes%20h_o_-_1_0-9%5Ctimes%20h_o_-_9%29%20%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%20%28T_1%20-T_2%29)
![h_o_-_1_0 = \frac{k}{10L} \times 0.664 \times (\frac{u_o\times 10L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.1} \times0.664\times (\frac{2 \times 0.1}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 16.6W/Km^2](https://tex.z-dn.net/?f=h_o_-_1_0%20%3D%20%5Cfrac%7Bk%7D%7B10L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%2010L%7D%7Bv%20%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.1%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.1%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2016.6W%2FKm%5E2)
Calculating
![h_o_-_9 = \frac{k}{9L} \times 0.664 \times (\frac{u_o\times 9L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.09} \times0.664\times (\frac{2 \times 0.09}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 17.5W/Km^2](https://tex.z-dn.net/?f=h_o_-_9%20%3D%20%5Cfrac%7Bk%7D%7B9L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%209L%7D%7Bv%20%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.09%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.09%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2017.5W%2FKm%5E2)
Calculating the rate of convection heat transfer from the tenth strip
![q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (10 \times 16.6 -9\times 17.5) \times(0.01\times 0.2)\times (500 -25)\\\\=8.1W](https://tex.z-dn.net/?f=q_1_0%20%3D%20%2810%20%5Ctimes%20h_o_-_1_0-9%5Ctimes%20h_o_-_9%29%20%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%20%28T_1%20-T_2%29%5C%5C%5C%5Cq_1_0%20%3D%20%2810%20%5Ctimes%2016.6%20-9%5Ctimes%2017.5%29%20%5Ctimes%280.01%5Ctimes%200.2%29%5Ctimes%20%28500%20-25%29%5C%5C%5C%5C%3D8.1W)
The rate of convection heat transfer from 25th strip is equal to
![q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)](https://tex.z-dn.net/?f=q_2_5%20%3D%20%2825%20%5Ctimes%20h_o_-_2_5-24%5Ctimes%20h_o_-_2_4%29%20%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%20%28T_1%20-T_2%29)
Calculating ![h_o_-_2_5](https://tex.z-dn.net/?f=h_o_-_2_5)
![h_o_-_2_5 = \frac{k}{25L} \times 0.664 \times (\frac{u_o\times 25L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.25} \times0.664\times (\frac{2 \times 0.25}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.5W/Km^2](https://tex.z-dn.net/?f=h_o_-_2_5%20%3D%20%5Cfrac%7Bk%7D%7B25L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%2025L%7D%7Bv%20%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.25%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.25%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2010.5W%2FKm%5E2)
Calculating ![h_o_-_2_4](https://tex.z-dn.net/?f=h_o_-_2_4)
![h_o_-_2_4 = \frac{k}{24L} \times 0.664 \times (\frac{u_o\times 24L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.24} \times0.664\times (\frac{2 \times 0.24}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.7W/Km^2](https://tex.z-dn.net/?f=h_o_-_2_4%20%3D%20%5Cfrac%7Bk%7D%7B24L%7D%20%5Ctimes%200.664%20%5Ctimes%20%28%5Cfrac%7Bu_o%5Ctimes%2024L%7D%7Bv%20%7D%20%29%5E1%5E%2F%5E2%5Ctimes%20Pr%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%20%5Cfrac%7B43.9%5Ctimes10%5E-%5E3%7D%7B0.24%7D%20%5Ctimes0.664%5Ctimes%20%28%5Cfrac%7B2%20%5Ctimes%200.24%7D%7B47.57%20%5Ctimes%2010%5E-%5E6%7D%20%29%5E1%5E%2F%5E2%5Ctimes%200.683%5E1%5E%2F%5E3%5C%5C%5C%5C%3D%2010.7W%2FKm%5E2)
Calculating the rate of convection heat transfer from the tenth strip
![q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (25 \times 10.5 -24\times 10.7) \times(0.01\times 0.2)\times (500 -25)\\\\=5.4W](https://tex.z-dn.net/?f=q_2_5%20%3D%20%2825%20%5Ctimes%20h_o_-_2_5-24%5Ctimes%20h_o_-_2_4%29%20%5Ctimes%28L%5Ctimes%20d%29%5Ctimes%20%28T_1%20-T_2%29%5C%5C%5C%5Cq_1_0%20%3D%20%2825%20%5Ctimes%2010.5%20-24%5Ctimes%2010.7%29%20%5Ctimes%280.01%5Ctimes%200.2%29%5Ctimes%20%28500%20-25%29%5C%5C%5C%5C%3D5.4W)
The summit of Mount Everest has an average pressure around 30 kPa. ... A barometer also measures variations in atmospheric pressure. As altitude increases, the air becomes thinner, the density of air decreases, and the pressure of the air decreases as well.
Answer:
I think its distance
Explanation:
when measuring how far a p.o art u can use mm