Answer:
10
Step-by-step explanation:
The number of tiles in the design is 1 + 2 + 3 + ...
We can model this as an arithmetic series, where the first term is 1 and the common difference is 1. The sum of the first n terms of an arithmetic series is:
S = n/2 (2a₁ + d (n − 1))
Given that a₁ = 1 and d = 1:
S = n/2 (2(1) + n − 1)
S = n/2 (n + 1)
Since S ≤ 60:
n/2 (n + 1) ≤ 60
n (n + 1) ≤ 120
n must be an integer, so from trial and error:
n ≤ 10
Mr. Tong should use 10 tiles in the final row to use the most tiles possible.
Answer:
<u>It</u><u> </u><u>is</u><u> </u><u>(</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>)</u><u>³</u><u> </u><u>-</u><u> </u><u>9</u><u>x</u><u>(</u><u>3</u><u> </u><u>-</u><u> </u><u>x</u><u>)</u>
Step-by-step explanation:
Express 27 in terms of cubes, 27 = 3³:

From trinomial expansion:

open first two brackets to get a quadratic equation:

expand further:

take y to be 3, then substitute:

no it is not one x cannot have 2 y's.
Answer: don't know sorry
Step-by-step explanation: