Answer:
I think the answer is gravity
Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.
Answer:
0.185moles
Explanation:
Given parameters:
Volume of O₂ = 49.8L
Unknown:
Number of moles of sucrose required = ?
Solution:
We can assume that the reaction takes place at standard temperature and pressure.
From this, we can find the number of moles of oxygen that reacted and extrapolate to that of sucrose.
Chemical equation;
C₁₂H₂₂0₁₁ + 120₂ → 12CO₂ + 11H₂0
Number moles =
at STP
Number of moles of oxygen gas =
= 2.22moles
12 moles of oxygen gas combines with 1 mole of sucrose
2.22 moles of oxygen gas will combine with
= 0.185moles
Answer:
Option B
Transfers energy to the water
Explanation:
Warm air transfers energy to the water when it flows over cold currents. This means that the warm air loses heat energy to the cold currents thus, raising its temperature.
Whenever there is a temperature difference between two bodies in contact with each other, the Fouriers law explains that there is always a transfer of heat from the hotter body to the colder body until they become the same temperature.
Thus, following this, heat will flow from the warm air to the cold currents.
A control group is the group in an experiment that does not receive any sort of change, to then be compared to the other treated objects at the end of the study.