We are given the pOH of the solution of 10.75. pOH is the property of the solution that is related to the OH ion concentration of the solution. THe formula to be followed is pOH = -log (OH); OH- = 10^-pOH. In this case, OH- = 10^-10.75 equal to B. 1.778 x 10^-11 M
<span>Phospholipids would have to form a phospholipid bilayer in order to achieve water on the outside and water inside. This is because the nonpolar tails of the phospholipids are facing each other in a water environment because they cannot interact with the water, only their own tails, while the phosphate heads of the molecule face the periphery of the tails and interact with water. Micelles are the simplest examples of these.</span>
Answer:
V₂ = 45.53 L
Explanation:
Given data:
Initial temperature = 850 K
Initial volume = 65 L
Initial pressure = 450 KPa
Final temperature = 430 K
Final pressure = 325 KPa
Final volume = ?
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 450 KPa× 65 L × 430 K / 850 K × 325KPa
V₂ = 12577500 KPa .L. K / 276250 K. KPa
V₂ = 45.53 L
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer:
it is not safe if you put the beaker down not on the wire gauze about the flame. SAFETY FIRST
Explanation: