The first one is 2 the second one is 3
Answer:
Let d be the remaining distance.
Let t be the remaining time.
The standard distance equation is:
d = rt
We are given the rate as 2, so:
d = 2t
At the start of the walk, the remaining distance is 3 miles.
The remaining time is 1.5 hours.
At the end of the walk, the remaining distance is 0 miles.
The remaining time is 0 hours.
A graph of the distance and time would be a continuous, solid line. That's because the walker will be at every distance between 3 and 0 and every time between 1.5 and 0.
Answer:
The graph of this would be a solid line
Answer:
x + 10
Step-by-step explanation:

The dimension that would give the maximum area is 20.8569
<h3>How to solve for the maximum area</h3>
Let the shorter side be = x
Perimeter of the semi-circle is πx
Twice the Length of the longer side
![[70-(\pi )x -x]](https://tex.z-dn.net/?f=%5B70-%28%5Cpi%20%29x%20-x%5D)
Length = ![[70-(1+\pi )x]/2](https://tex.z-dn.net/?f=%5B70-%281%2B%5Cpi%20%29x%5D%2F2)
Total area =
area of rectangle + area of the semi-circle.
Total area =
![x[[70-(1+\pi )x]/2] + [(\pi )(x/2)^2]/2](https://tex.z-dn.net/?f=x%5B%5B70-%281%2B%5Cpi%20%29x%5D%2F2%5D%20%2B%20%5B%28%5Cpi%20%29%28x%2F2%29%5E2%5D%2F2)
When we square it we would have
![70x +[(\pi /4)-(1+\pi)]x^2](https://tex.z-dn.net/?f=70x%20%2B%5B%28%5Cpi%20%2F4%29-%281%2B%5Cpi%29%5Dx%5E2)
This gives
![70x - [3.3562]x^2](https://tex.z-dn.net/?f=70x%20-%20%5B3.3562%5Dx%5E2)
From here we divide by 2

The maximum side would be at

This gives us 20.8569
Read more on areas and dimensions here:
brainly.com/question/19819849
#SPJ1
I think the answer to your question might be 6