keeping in mind that the vertex is between the focus point and the directrix, in this cases we have the focus point above the directrix, meaning is a vertical parabola opening upwards, Check the picture below, which means the "x" is the squared variable.
now, the vertical distance from the focus point to the directrix is
, which means the distance "p" is half that or 1/8, and is positive since it's opening upwards.
since the vertex is 1/8 above the directrix, that puts the vertex at
, meaning the y-coordinate for the vertex is 2.
![\bf \textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \begin{cases} h=-4\\ k=2\\ p=\frac{1}{8} \end{cases}\implies 4\left(\frac{1}{8} \right)(y-2)=[x-(-4)]^2\implies \cfrac{1}{2}(y-2)=(x+4)^2 \\\\\\ y-2=2(x+4)^2\implies \blacktriangleright y = 2(x+4)^2+2 \blacktriangleleft](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20h%3D-4%5C%5C%20k%3D2%5C%5C%20p%3D%5Cfrac%7B1%7D%7B8%7D%20%5Cend%7Bcases%7D%5Cimplies%204%5Cleft%28%5Cfrac%7B1%7D%7B8%7D%20%5Cright%29%28y-2%29%3D%5Bx-%28-4%29%5D%5E2%5Cimplies%20%5Ccfrac%7B1%7D%7B2%7D%28y-2%29%3D%28x%2B4%29%5E2%20%5C%5C%5C%5C%5C%5C%20y-2%3D2%28x%2B4%29%5E2%5Cimplies%20%5Cblacktriangleright%20y%20%3D%202%28x%2B4%29%5E2%2B2%20%5Cblacktriangleleft)
10 * 100 = 1000 so... 10^3 would equal 1000 too
<span>Simplifying
graph + -1x + -9y = 8
Solving
aghpr + -1x + -9y = 8
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add 'x' to each side of the equation.</span>
I could only figure out the partial quotient way im sorry but i think this could help
Answer:
Jan brought 44 cookies
Step-by-step explanation:
To solve this problem, we need to work backwards. First, we have 10 cookies left at the end of the day. At lunch, she gave away 12 cookies. This means that Ms. Jan had 22 cookies at lunch since
10
+
12
=
22
In the morning, Ms. Jan gave out half of her cookies. This means that she started with twice as many cookies as she had at the beginning of lunch.
22 x 2
=
44
Ms. Jan brought 44 cookies.