Answer:
the intensity of the light after passing through the two polarizing filters is 4.11 units
Explanation:
Given the data in the question;
the intensity of an unpolarized light; I₀ = 25.0 units
when the unpolarized light passes through the first polarizer, its intensity reduces to half of its initial value;
⇒ I₁ = I₀/2 = 25/2 = 12.5 units
the angle between the transmission axes of two polarizers is;
∅ = 55° - 0° = 55°
The intensity of the light after passing through two polarizing filters will be;
I₂ = I₁cos²∅
we substitute
I₂ = 12.5 × cos²(55)
I₂ = 12.5 × 0.3289899
I₂ = 4.11 units
Therefore, the intensity of the light after passing through the two polarizing filters is 4.11 units
Answer:
k = 104.46 N/m
Explanation:
Here we can use energy conservation
so we will have
initial gravitational potential energy = final total spring potential energy
as we know that she falls a total distance of 31 m
while the unstretched length of the string is 12 m
so the extension in the string is given as


so we have



Answer:
Explanation:
Let time taken by Jada in driving be t hour .
distance travelled by jada = 55 t
a )
Time of drive by destiny = t - 10 min
= t - .167 hour
distance of travel by destiny = 70 ( t - .167 )
Total distance = 45 miles
55 t + 70 ( t - .167 ) = 45
55t + 70 t - 11.69 = 45
125 t = 56.69
t = .453 hour = 27.21 minutes
b )
distance travelled by Destiny = 70 ( t - .167 )
70 ( .453 - .167 )
= 20.02 miles .
Answer:
The path difference between the two waves should be one-half of a wavelength
Explanation:
When two beams of coherent light travel different paths, arriving at point P. If the maximum destructive interference is to occur at point P , then the condition for it is that the path difference of two beams must be odd multiple of half wavelength. Symbolically
path difference = ( 2n+1 ) λ / 2
So path difference may be λ/2 , 3λ/ 2, 5λ/ 2 etc .
Hence right option is
The path difference between the two waves should be one-half of a wavelength.