Answer:
Explanation:
DetaM=4 x 1.02875 - 4.002603
DetaM= 0.028697u
Using E= mc²
= 0.028697 x 1.49x*10^-10
= 4.2x10^-12J
Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.

x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land
Answer:
E= -3.166 cosωt V
Explanation:
Given that
I = Imax sinωt
L= 8.4 m H
Imax= 4 A
f = ω/2π = 60.0 Hz
ω = 120π rad/s
We know that self induce E given as




E= -3166.72 cosωt m V
E= -3.166 cosωt V
This is the induce emf.
Answer:
The correct option is;
Still constant
Explanation:
The relative refractive index ₁n₂ between the two medium can be as follows;

Therefore, given that the speed of light in medium 1 is constant and the speed of light on medium 2 is also constant, the relative refractive index ₁n₂ = c₁/c₂ is always constant.