Answer:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's find the answer.
Because we have 3 equations and 3 variables (x1, x2, x3) a 3x3 matrix (A) can be constructed by using their respectively coefficients.
Equations:
Eq. 1 : x1 + 2x2 + 5x3 = 5
Eq. 2 : x1 + x2 + x3 = 6
E1. 3 : 4x1 + 6x2 + 5x3 = 7
Coefficients for x1 ; x2 ; x3
From eq. 1 : 1 ; 2 ; 5
From eq. 2 : 1 ; 1 ; 1
From eq. 3 : 4 ; 6 ; 5
So matrix A is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D)
And the vector of vriables (X) is:
![\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D)
Now we can find the resulting vector (B) using the 'resulting values' from each equation:
![\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
In conclusion, AX=B is:
![\left[\begin{array}{ccc}1&2&5\\1&1&1\\4&6&5\end{array}\right]*\left[\begin{array}{ccc}x1\\x2\\x3\end{array}\right]=\left[\begin{array}{ccc}5\\6\\7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%265%5C%5C1%261%261%5C%5C4%266%265%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx1%5C%5Cx2%5C%5Cx3%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C6%5C%5C7%5Cend%7Barray%7D%5Cright%5D)
Answer and Step-by-step explanation:
Each package has 12 pencils
total number of pencils Sarah purchased: n = 12p
n = total number of pencils
p = number of packages
n depends on p, because the total number of pencils dependos on how many packages she will buy, so:
independent variable: p
dependent variable: n
╔═══╦══════════╦════╗
║ p ║ n = 12p ║ n ║
╠═══╬══════════╬════╣
║ 3 ║ n = 12*3 ║ 36 ║
╠═══╬══════════╬════╣
║ 4 ║ n = 12*4 ║ 48 ║
╠═══╬══════════╬════╣
║ 5 ║ n = 12*5 ║ 60 ║
╠═══╬══════════╬════╣
║ 6 ║ n = 12*6 ║ 72 ║
╠═══╬══════════╬════╣
║ 7 ║ n = 12*7 ║ 84 ║
╚═══╩══════════╩════╝
Answer:
false statement
Step-by-step explanation:
5+x^2=2x^2+13
5+x^2-2x-13=0
-8+x^2-2x^2=0
-8-x^2=0
-x^2=8
x^2=-8
this statement is false for any value of x because the power function with an even exponent is always postive or 0
Variable, because its a letter<span />