Answer:
The flagpole is 15 feet tall.
Step-by-step explanation:
The man casts a shadow that is 2/3 the length of his height. Because we know that the man and the flagpole are standing at the same time of the day, we can conclude that the shadow of the flagpole is 2/3 the length of the flagpole as well. Then, you would multiple 10(3/2) to get 15 as the height of the flagpole.
F x L = 3x10^10
L = 1x10^-11
F= 3x10^10 / 1x10^-11 = 3x10^21 unit
<span>mathematical relationship in which each input corresponds to the same terms. </span>
well, we'll first off put the point AC in component form by simply doing a subtraction of C - A, multiply that by the fraction 2/3, and that result will get added to point A, to get point B.
![\bf \textit{internal division of a segment using a fraction}\\\\ A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{5})\qquad C(\stackrel{x_2}{4}~,~\stackrel{y_2}{-4})~\hfill \frac{2}{3}\textit{ of the way from }A\to C \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_2}{4}-\stackrel{x_1}{(-2)}, \stackrel{y_2}{-4}-\stackrel{y_1}{5})\implies (4+2,-9) \stackrel{\textit{component form of segment AC}}{\qquad \implies \qquad (6,-9)} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Binternal%20division%20of%20a%20segment%20using%20a%20fraction%7D%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-4%7D%29~%5Chfill%20%5Cfrac%7B2%7D%7B3%7D%5Ctextit%7B%20of%20the%20way%20from%20%7DA%5Cto%20C%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_2%7D%7B4%7D-%5Cstackrel%7Bx_1%7D%7B%28-2%29%7D%2C%20%5Cstackrel%7By_2%7D%7B-4%7D-%5Cstackrel%7By_1%7D%7B5%7D%29%5Cimplies%20%284%2B2%2C-9%29%20%5Cstackrel%7B%5Ctextit%7Bcomponent%20form%20of%20segment%20AC%7D%7D%7B%5Cqquad%20%5Cimplies%20%5Cqquad%20%286%2C-9%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
29.5+/-1.11
= ( 28.39, 30.61)
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 29.5
Standard deviation r = 5.2
Number of samples n = 59
Confidence interval = 90%
z-value (at 90% confidence) = 1.645
Substituting the values we have;
29.5+/-1.645(5.2/√59)
29.5+/-1.645(0.676982337100)
29.5+/-1.113635944529
29.5+/-1.11
= ( 28.39, 30.61)
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61)