Answer:
In the steel: 815 kPa
In the aluminum: 270 kPa
Explanation:
The steel pipe will have a section of:
A1 = π/4 * (D^2 - d^2)
A1 = π/4 * (0.8^2 - 0.7^2) = 0.1178 m^2
The aluminum core:
A2 = π/4 * d^2
A2 = π/4 * 0.7^2 = 0.3848 m^2
The parts will have a certain stiffness:
k = E * A/l
We don't know their length, so we can consider this as stiffness per unit of length
k = E * A
For the steel pipe:
E = 210 GPa (for steel)
k1 = 210*10^9 * 0.1178 = 2.47*10^10 N
For the aluminum:
E = 70 GPa
k2 = 70*10^9 * 0.3848 = 2.69*10^10 N
Hooke's law:
Δd = f / k
Since we are using stiffness per unit of length we use stretching per unit of length:
ε = f / k
When the force is distributed between both materials will stretch the same length:
f = f1 + f2
f1 / k1 = f2/ k2
Replacing:
f1 = f - f2
(f - f2) / k1 = f2 / k2
f/k1 - f2/k1 = f2/k2
f/k1 = f2 * (1/k2 + 1/k1)
f2 = (f/k1) / (1/k2 + 1/k1)
f2 = (200000/2.47*10^10) / (1/2.69*10^10 + 1/2.47*10^10) = 104000 N = 104 KN
f1 = 200 - 104 = 96 kN
Then we calculate the stresses:
σ1 = f1/A1 = 96000 / 0.1178 = 815000 Pa = 815 kPa
σ2 = f2/A2 = 104000 / 0.3848 = 270000 Pa = 270 kPa
Answer:
Horse power = 167.84 hp
Explanation:
Horsepower is calculated using the formula;
P = T * w
See the attached file for the calculation
Answer:
Dr. Engelbart, who would later help develop the computer mouse and other personal computing technologies, theorized that as electronic circuits were made smaller, their components would get faster, require less power and become cheaper to produce — all at an accelerating pace
Answer:
In the attached solution, the following calculations have already been calculated: Per phase , Maximum , RMS value of Internal Voltage in this sequence.
Explanation: