True strain and engineering strain? True stress is defined as the load divided by the cross-sectional area of the specimen at that instant and is a true indication of the internal pressures. ... Engineering stress is defined as the load divided by the initial cross-sectional area of the specimenAnswer:
Explanation:
Answer:
YES
Explanation:
Entropy is an extensive property of the system entropy change that value of entropy change can be determined for any process between the states whether reversible or not. i have attached the formula to calculate entropy change which is independent of whether the system is reversible or not and can be determined for any process.
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
I don’t know what you mean by that
Answer:

Explanation:
Steam at outlet is an superheated steam, since
. From steam tables, the specific enthalpy is:

The throttle valve is modelled after the First Law of Thermodynamics:

Hence, specific enthalpy at inlet is:

The quality in the steam line is:

