1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
3 years ago
11

Three return steam lines in a chemical processing plan enter a collection tank operating at a steady state at 1 bar. Steam enter

s inlet 1 with flow rate of 0.8 kg/s and a quality of 0.9. Steam enters inlet 2 with flow rate of 2kg/s at 200 degrees C. Steam enters inlet 3 with flow rate 1.2 kg/s at 95 degrees C. Steam exits the tank at 1 bar. The rate of heat transfer from the collection tank is 40 kW. Neglecting kinetic and potential energy effects, determine for the steam exiting the tank:(a)Mass flow rate in kg/s (b) the temperature in degrees C.
Engineering
1 answer:
gavmur [86]3 years ago
4 0

Answer:

a. 4kg/s

b. 99.97 °C

Explanation:

Hello,

a. The resulting mass balance turns out into:

F_1+F_2+F_3=F_{out}\\F_{out}=0.8kg/s+2kg/s+1.2kg/s=4kg/s

b. Now, the energy balance is:

F_1h_1+F_2h_2+F_3h_3-Q_{out}=F_{out}h_{out}

In such a way, the first enthalpy is taken as a liquid-vapor mixture at 1 bar and 0.9 quality, it means:

h_1=hf(1bar)+xhfg(1bar)\\h_1=419.06kJ/kg+0.9*2256.5kJ/kg=2449.91kJ/kg

Second enthalpy is taken by identifying that stream as an overheated vapor at 1 bar and 200 °C, thus, the resulting enthalpy is:

h_2=2875.5kJ/kg

Then, the third enthalpy is taken by considering that at 95°C and 1 bar the water is a saturated liquid, thus:

h_3=hf(95^0C)=398.09kJ/kg.

Now, by solving for h_{out}, we've got:

h_{out}=\frac{0.8kg/s*2449.91kJ/kg+2kg/s*2875.5kJ/kg+1.2kg/s*398.09kJ/kg-40kW}{4kg/s} \\h_{out}=\frac{8148.612kJ/s}{4kg/s} \\h_{out}=2037.153kJ/kg

Finally, by searching for that value of enthalpy, one sees that at 1 bar, the exiting stream is a liquid-vapor mixture that is at 99.97 °C and has a 72%- quality.

(NOTE: all the data was extracted from Cengel's book 7th edition).

Best regards.

You might be interested in
Differentiate between "Threshold and Resolution" with suitable examples.
9966 [12]

Answer:

to make the bace of a building more sturdy

Explanation:

example: the bace of the empire state building is stone very sturdy

6 0
3 years ago
Design a 7.5-V zener regulator circuit using a 7.5-V zener specified at 10mA. The zener has an incremental resistance of rZ = 30
hram777 [196]

Answer:

The answer is given in the explanation.

Explanation:

The circuit is as indicated in the attached figure.

From the analytical description the zener voltage is given as

V_z=V_z_o+I_zr_z

Here

Vzo is the voltage at which the slope of 1/rz intersects the voltage axis it is equal to knee voltage.

The equivalent model is shown in the attached figure.

From the above equation, Vzo is calculated as

V_z_o=V_z-I_zr_z

Here Vz is given as 7.5 V

Iz is given as 10 mA

rz is given as 30 Ω

Thus the Vzo is given as

V_z_o=V_z-I_zr_z\\V_z_o=7.4-30*10*10^{-3}\\V_z_o=7.5-0.3\\V_z_o=7.2 V

The value of I_L is given as 5 mA

Now the expression of current is as

I=I_z+I_L\\I=10mA+5mA\\I=15 mA

Now the resistance is calculated as

R=\dfrac{V-Vo}{I}\\R=\dfrac{10-7.2}{15*10^{-3}}\\R=186.66

So the value of resistance is 186.66 Ω.

Considering the supply voltage is increased by 10%

V is 10-10%*10=10+1=11 so the

R=\dfrac{V-Vo}{I}\\186.66=\dfrac{11-V_o}{15*10^{-3}}\\V_o=8.2 V

Considering the supply voltage is decreased by 10%

V is 10-10%*10=10-1=9 so the

R=\dfrac{V-Vo}{I}\\186.66=\dfrac{9-V_o}{15*10^{-3}}\\V_o=6.2 V

Now if the supply voltage is 10% high and the value of Load is removed i.e I=Iz only which is 10mA

so

R=\dfrac{V-Vo}{I'}\\186.66=\dfrac{11-V_o}{10*10^{-3}}\\V_o=9.13 V

Now the largest load current thus that the supply voltage is 10% low and the current of zener is knee current thus

V_z_o=V_z-I_zr_z\\V_z_o=7.5-30*0.5*10^{-3}\\V_z_o=7.5-0.015\\V_z_o=7.485 V

R=\dfrac{V-Vo}{I'}\\186.66=\dfrac{9-7.485}{I}\\I=10.71 mA

The load voltage is 7.485 V

8 0
3 years ago
Supercharging is the process of (a) Supplying the intake of an engine with air at a density greater than the density of the surr
iVinArrow [24]

Answer:

a)supplying the  intake of an engine  with air at a  density greater  than the density  of the surrounding  atmosphere

Explanation:

Supercharging  is the process of  supplying the  intake of an engine  with air at a  density greater  than the density  of the surrounding  atmosphere.

By doing this , it increases  the power out put  and increases the  brake thermal  efficiency of the  engine.It also  increases the  volumetric efficiency of the  engine.

So the our  option a is  right.

4 0
3 years ago
A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °
SOVA2 [1]

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Explanation:

Thermal Conductivity=k=30  (Btu/hr)/(ft ⋅ °F)= \frac{30}{3600} (Btu/s)/(ft.F)=8.33*10^{-3}  (Btu/s)/(ft.F)

Thermal Conductivity is SI units:

k=30(Btu/hr)/(ft.F) * \frac{1055.06}{3600*0.3048*0.556} \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)

A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{51.88*0.000012566*(500-50}{0.2}\\ Q=1.467 J

In Btu:

A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{8.33*10^{-3}*0.00013519*(932-122}{0.656}\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m

Q=\frac{k*A*(T_1-T_2)}{L}

On rearranging:

T_2=T_1-\frac{Q*L}{KA}

T_2=500-\frac{1.467*0.1}{51.88*0.00001256} \\T_2=274.866\ C

4 0
3 years ago
Solve the questions in the picture
STatiana [176]
15x -/c/ fb is the answer
6 0
3 years ago
Other questions:
  • A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 kpsi. The bar is subjected to a steady torsio
    7·1 answer
  • What is an Algorithm? *
    5·1 answer
  • a valueable preserved biological specimen is weighed by suspeding it from a spring scale. it weighs 0.45 N when it is suspendedi
    11·1 answer
  • 21. How long can food that requires time-temperature control be left in the danger zone?
    7·2 answers
  • A 450 MWt combined cycle plant has a Brayton cycle efficiency of 24% and a Rankine cycle efficiency of 29% with no heat augmenta
    6·1 answer
  • The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
    10·1 answer
  • SEICUL UC CULTELL allsvel.
    9·2 answers
  • If the power to a condensing unit has been turned off for an extended period of time, the _________________________ should be en
    12·1 answer
  • A large building will need several different types of workmen to install and repair pipes for water, heating,
    10·1 answer
  • Nothing. i have nothing to say but that. other than that im good. :))))
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!