1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
14

How do I verify: tan(x)+cot(x)=(2)/sin(2x)?

Mathematics
1 answer:
Ne4ueva [31]3 years ago
4 0

sin^2(\theta)+cos^2(\theta)=1\qquad \qquad sin(2\theta)=2sin(\theta)cos(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}

tan(x)+cot(x)=\cfrac{2}{sin(2x)} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{doing the left-hand-side}}{\cfrac{sin(x)}{cos(x)}+\cfrac{cos(x)}{sin(x)}\implies \cfrac{sin^2(x)+cos^2(x)}{\underset{\textit{using this LCD}}{sin(x)cos(x)}}} \implies \cfrac{1}{sin(x)cos(x)}

now, let's recall that anything times 1 is just itself, namely 5*1 =5, 1,000,000 * 1 = 1,000,000, "meow" * 1 = "meow" and so on, so we can write anything as time 1.

let's recall something else, that same/same = 1, so

\cfrac{cheese}{cheese}\implies \cfrac{spaghetti}{spaghetti}\implies \cfrac{horse}{horse}\implies \cfrac{butter}{butter}\implies \cfrac{25^7}{25^7}=1

therefore

\cfrac{1}{sin(x)cos(x)}\cdot \cfrac{2}{2}\implies \cfrac{2}{2sin(x)cos(x)}\implies \cfrac{2}{sin(2x)}

You might be interested in
In ΔSTU, m∠S=(11x+3)∘,∠T=(2x+16)∘, and m∠U=(x+7)∘. Find .
frozen [14]

Answer:

x = 11

Step-by-step explanation:

In ΔSTU ,

m∠S = (11x+3)° ; m∠T = (2x+16)° ; m∠U = (x+7)°

According to angle sum property of a triangle , sum of all the interior angles of the triangle is 180°.

So,

11x + 3 + 2x + 16 + x + 7 = 180

=  > 14x + 26 = 180

=  > 14x = 180 - 26 = 154

=  > x =  \frac{154}{14}  = 11

6 0
3 years ago
Una recta con pendiente -2 ´pasa por el punto P(5, -1). La abscisa del punto Q que está en esa recta es 1. Encuentre la ordenada
oksian1 [2.3K]

Answer:

La ordenada de Q es 7.

Step-by-step explanation:

La ecuación de una recta es:

y = a*x + b

donde a es la pendiente y b es la ordenada al origen.

Para este problema, sabemos que la pendiente es -2

Entonces:

a = -2

y = -2*x + b

También sabemos que esta recta pasa por el punto (5, -1)

Esto significa que cuando evaluamos la ecuación en x = 5, y toma el valor y = -1

Si reemplazamos esos valores en la ecuación, obtenemos:

-1 = -2*5 + b

-1 = -10 + b

-1 + 10 = b

9 = b

Entonces la ecuación de la recta es:

y = -2*x + 9

Sabemos que el punto Q está en la línea, y la abscisa de este punto es 1.

Entonces este punto es Q (1, k)

donde k es la ordenada de este punto.

Porque nuestra línea también pasa por este punto, podemos concluir que cuando x = 1, y = k

Reemplazando eso en la ecuación tenemos:

k = -2*1 + 9 = -2 + 9 = 7

k = 7

La ordenada de Q es 7.

7 0
3 years ago
Help please and thank you!
Len [333]

Answer:

y = 2/5x + 3

Step-by-step explanation:

7 0
3 years ago
Answer The Question On The Picture
taurus [48]

Answer:

a

Step-by-step explanation:

8 0
3 years ago
Find f(x) and g(x) so that the function can be described as y = f(g(x)).
mote1985 [20]
let g(x) = x^2+2 let f(x) = 9/x f(g(x)) is therefore equal to f(x^2 + 2) which is equal to 9/(x^2+2).
5 0
3 years ago
Other questions:
  • Round 374,839 to the nearest thousandth
    15·2 answers
  • What are algebraic expressions?
    5·2 answers
  • Solve x/9 - 1/3 = -5/3. The solution of x is:
    15·2 answers
  • Find the odds in favor and the odds against a randomly selected person from Country X, age 25 and over, with the stated amount o
    5·1 answer
  • A car took 6 minutes to travel between two stations that are 3 miles apart find the average speed of the car in mph
    5·2 answers
  • Please help, my brain just sucks rn. The area of a rectangle is 93.6 square inches. If the length of one of its sides is 5.2 in.
    9·1 answer
  • pls help due in 5 minutes
    8·1 answer
  • Find the equation to the line below .
    14·1 answer
  • Write 2 / 3 of 4 as a mixed number. ​
    12·2 answers
  • Region R is bounded by the curves y = 4x^2 and y = 4. A solid has base R, and cross sections perpendicular to the y-axis are sem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!