1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
13

Water pumps use electrical energy to create mechanical energy needed to move water.

Physics
1 answer:
Afina-wow [57]2 years ago
3 0

Answer:

n/a

Explanation:

this question is not feasible

You might be interested in
What is/are the difference between wavelength and spectral lines?
Gre4nikov [31]

Answer:

<u><em>Definition of spectral line: </em></u><em>one of a series of linear images formed by a spectrograph or similar instrument and corresponding to a narrow portion of the spectrum of the radiation emitted or absorbed by a particular source.</em>

<em />

<u><em>Definition of Wavelength:</em></u><em> can be defined as the distance between two successive crests or troughs of a wave. It is measured in the direction of the wave. ... Wavelength is inversely proportional to frequency. This means the longer the wavelength, lower the frequency.</em>

<em />

<em>So, the spectrum is the range of wavelength in visible light. While, wavelength is the length of a wave.</em>

<em></em>

Explanation:

I hope this helps!

8 0
2 years ago
A damped mass/spring system takes 14.0 s for its amplitude of the oscillator to decrease by a factor of 9. By what factor does t
fiasKO [112]

Answer:

The correct answer is "0.246".

Explanation:

Given that the amplitude is decreased by a factor of 9, then

A \rightarrow (A-\frac{A}{9} )

A \rightarrow \frac{8A}{9}

As we know,

Energy will be:

⇒  E_{1}=\frac{1}{2}KA^2

and,

⇒  E_{2}=\frac{1}{2}K(\frac{8A}{9} )^2

          =\frac{64KA^2}{162}

⇒  \Delta E=E_1-E_2

On putting the estimated values, we get

           =\frac{1}{2}KA^2-\frac{64KA^2}{162}

⇒  \frac{\Delta E}{E}=\frac{\frac{20}{162}KA^2}{\frac{1}{2}KA^2}

          =\frac{40}{162}

          =0.246

3 0
3 years ago
Suppose that Hubble's constant were H0 = 51 km/s/Mly (which is not its actual value). What would the approximate age of the univ
bija089 [108]

Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Given the data in the question;

Hubble's constant; H_0 = 51km/s/Mly

Age of the universe; t = \ ?

We know that, the reciprocal of the Hubble's constant ( H_0 ) gives an estimate of the age of the universe ( t ). It is expressed as:

Age\ of\ Universe; t = \frac{1}{H_0}

Now,

Hubble's constant; H_0 = 51km/s/Mly

We know that;

1\ light\ years = 9.46*10^{15}m

so

1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m

Therefore;

H_0 = 51\frac{km}{\frac{s}{Mly} } = 51000\frac{m}{s\ *\ Mly}  \\\\H_0 = 51000\frac{m}{s\ *\ (9.46*10^{21}m)} \\\\H_0 =  5.39 *10^{-18}s^{-1}\\

Now, we input this Hubble's constant value into our equation;

Age\ of\ Universe; t = \frac{1}{H_0}\\\\t = \frac{1}{ 5.39 *10^{-18}s^{-1}} \\\\t = 1.855 * 10^{17}s\\\\We\ convert\ to\ years\\\\t =  \frac{ 1.855 * 10^{17}}{60*60*24*365}yrs \\\\t = \frac{ 1.855 * 10^{17}}{31536000}yrs\\\\t = 5.88 *10^9 years

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Learn more: brainly.com/question/14019680

6 0
3 years ago
Radar uses radio waves of a wavelength of 2.9 m . The time interval for one radiation pulse is 100 times larger than the time of
Mandarinka [93]

Answer:

145 m

Explanation:

Given:

Wavelength (λ) = 2.9 m  

we know,

c = f × λ  

where,

c = speed of light ; 3.0 x 10⁸ m/s

f = frequency  

thus,

f=\frac{c}{\lambda}

substituting the values in the equation we get,

f=\frac{3.0\times 10^8 m/s}{2.9m}

f = 1.03 x 10⁸Hz  

Now,

The time period (T) = \frac{1}{f}

or

T =  \frac{1}{1.03\times 10^8}  = 9.6 x 10⁻⁹ seconds  

thus,

the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s  

Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s  

Now,

For radar to detect the object the pulse must hit the object and come back to the detector.

Hence, the shortest distance will be half the distance travelled by the pulse back and forth.

Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}  

Thus, the minimum distance to target = \frac{290}{2} = 145 m

6 0
3 years ago
1. which of the following should be classified as a suspension?
Mumz [18]
Where are the answers to this question?
3 0
3 years ago
Other questions:
  • Precipitation is most likely occurring at A because it is located
    13·1 answer
  • When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the _
    10·1 answer
  • If an object gains an additional 5 m/s of speed every second, the object is?
    8·2 answers
  • A 0.358 kg particle slides around a horizontal track. The track has a smooth, vertical outer wall forming a circle with a radius
    14·1 answer
  • 9. A pendulum bob is made with a ball filled with water. What would happen to the frequency of vibration of this pendulum if a h
    9·1 answer
  • If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the co
    15·1 answer
  • Kim holds a pinwheel in the air and says it can be used to model a source of energy. Identify the type of energy Kim's pinwheel
    14·1 answer
  • What is the expermintal example of Zeeman effect?
    10·1 answer
  • A battery is used to power a flashlight. When the flashlight is in use, what type of energy is lost during energy transformation
    8·2 answers
  • If a ball is rolling at a velocity of 1.5 m/s and has a momentum of 10.0 kg times m/s, what is the mass of the ball?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!