Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.
Dark matter may explain <span>unexpected orbital velocities of stars in galaxies.</span>
Answer:
Work done by a tug boat, W = 1.735 x 10⁸ J
Explanation:
Given,
The of each tugboat, F = 1.5 x 10⁶ N
The angle of each tugboat forms with the resultant force, θ = 19°
The displacement of the supertanker, s = 710 m
The individual tugboat will be responsible for the displacement, d = 710/2
= 355 m
The displacement component in each tugboat direction = 355 · sin θ meter
Therefore, the work done by each tugboat is
W = F x S joules
Substituting the values in the above equation
W = 1.5 x 10⁶ x 355 · sin θ
= 1.735 x 10⁸ J
Hence, the work done by each tugboat is, W = 1.735 x 10⁸ J
Answer:
Vprom = 0.00347[km/min]
Explanation:
We can calculate each of the average speeds and then perform the overall average between the two speeds.
V1 = 6/54
V1 = 0.111[km/min]
V2 = 1/16
V2 = 0.0625[km/min]
![V_{prom} = \frac{V_{1} + V_{2}}{2} \\V_{prom} = \frac{0.1111 + 0.0625}{2}\\V_{prom} = 0.00347 [km/min]](https://tex.z-dn.net/?f=V_%7Bprom%7D%20%3D%20%5Cfrac%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%7B2%7D%20%20%5C%5CV_%7Bprom%7D%20%3D%20%5Cfrac%7B0.1111%20%2B%200.0625%7D%7B2%7D%5C%5CV_%7Bprom%7D%20%3D%200.00347%20%5Bkm%2Fmin%5D)
The answer should be 11,460 because the first half-life leaves 50 percent left and the next half-life would leave 25 percent which dates the bones at 11,460 years old.