All electromagnetic waves travel at the same speed in a vacuum: 3.0 x 10^5 (300,000) kilometres per second. some electromagnetic waves are part of the visible light spectrum and some do emit harmful radiation, but certainly not all. they travel fine on earth without the vacuum of space too.
Answer:
Explanation:
Given that
Superelation= 0.08ft/ft
Given curve= u•
Curve junction factor= 0.13
DR= 5729.57795
R = 5729.57795/D
R = 5729.57795/4
R = 1432.4ft
c + f = V^2/gG
0.08 + 0.13 = V^2 / (32*1432.4)
V^2 = 9625.728 or V = 98 ft/sec
The designed speed for a project considered is a minimum value which means the highway design elements will meet or exceed the standards for the design speed. The maximum safe speed under normal condition is significantly greater than design speed
Answer:
A block of mass M = 5 kg is resting on a rough horizontal surface for which the coefficient of friction is 0.2. When a force F = 40N is applied, the acceleration of the block will be then (g=10ms
2 ).
Mass of the block=5kg
Coeffecient of friction=0.2
external applied force, F=40N
The angle at which the force is applied=30degree
So the horizontal component of force=Fcos30=40×
23 =20 3 N
While the uertical component of the force acting in upward direction=Fsin30=40× 21
=20N
The normal reaction from the surface (N)=mg−Fsin30=50−20=30N
So the ualue of limiting friction=μN=0.2×30=6N
Hence the net horizontal force on the block=Fcos30=μN=20
3
N−6N=28.64N
The horizontal acceleration of the block=
m
Fcos30−μN = 528.64
=5.73m/s 2
The law applied here is Newton's first law, also known as, law of inertia.
This law states that: A body will retain its state of rest or motion unless acted upon by an external force.
If you are moving and the bus suddenly stops, your body will lurch forward trying to retain its state of motion until it comes to rest and changes its state by the external force acted on it.
If you are at rest and the bus suddenly moves, your body will lurch backwards trying to retain its state of rest and opposing the force of motion until it is forced to change its state by this force.