1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
2 years ago
11

A sound wave has a speed of 343 m/s in air. What is the wavelength of a sound wave with a frequency of 686 Hz

Physics
1 answer:
Svetradugi [14.3K]2 years ago
6 0

Wavelength is the distance between 2 adjacent points in a wave

we can use the following equation to find the wavelength of a sound wave

wavelength = speed / frequency

frequency is the number of waves passing a point in 1 second

substituting the values in the equation

wavelength = 343 m/s / 686 Hz

wavelength = 0.5 m

wavelength of the wave is 0.5 m

You might be interested in
Can two objects exert a force on each other without touching? example
lara [203]

Answer:

where is the example...?

7 0
2 years ago
If an automobile engine delivers 42.0 hp of power, how much time will it take for the engine to do 6.20 â 105 j of work? (hint:
Elena L [17]
To be able to answer this item, we are to calculate the power that the machine could deliver from hp to kW. 

      (45 hp)(746 W/1 hp) = 33570 W

Power is the amount of energy delivered at a certain period. 

             t = (6.20 x 10^2 J)/ (33570 kJ/s)

             t = 0.01845 s
7 0
3 years ago
Which group of elements are shiny, opaque, and have a high melting point?
vlabodo [156]
The answer is A. Metals
3 0
3 years ago
A convex mirror has a focal length of -10.8 cm. An object is placed 32.7 cm from the mirror's surface. Determine the image dista
KonstantinChe [14]

Answer:

-353.16

Explanation:

4 0
2 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
2 years ago
Other questions:
  • What is the name of alfred wegener's hypothesis about moving land masses?
    12·2 answers
  • The rate at which correct flows is measured in _?
    7·1 answer
  • Suppose that Paul D. Trigger fires a bullet from a gun. Will the speed of the bullet leaving the muzzle will be the same as the
    12·1 answer
  • Explain why you can hear two people talking even after they walk around a corner.
    5·2 answers
  • A long, thin rod parallel to the y-axis is located at x = -1.0 cm and carries a uniform linear charge density of +1.0 nC/m. A se
    6·1 answer
  • What is an example of a partially movable joint?
    13·1 answer
  • If the resistance of a circuit is 3 ohms, and the voltage produced by the cell in the
    15·1 answer
  • Planets A and B have the same size, mass, and direction of travel, but planet A is traveling through space at half the speed of
    12·1 answer
  • Which statement describes how nuclear power generation systems work?
    11·1 answer
  • Which of the following examples BEST describes the life characteristic of respiration?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!