The added weight of the sand puts more downward pressure on the wheels contacting the rails, which would cause the trains speed to decrease.
Explanation:
It is given that,
Speed, v₁ = 7.7 m/s
We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :




So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.
Answer:
You never know if the medication could make you worse
Explanation:
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go