Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
<span>The answer would be convection currents. Convection happens when atoms with a lot of heat energy in a liquid or gas transfer and get the room of particles with fewer heat energy. Heat energy is transported from hot places to cooler places by convection.</span>
1. B- it can cause cirrhosis
2. C- intoxication
3. A- admit to having a problem with alcohol
4. D- binge-drinking
5. A- depressant
6. true
7. false
Since you are looking for the speed, you need to rearrange the formula which is f = speed / wavelength. That should give you speed = f (wavelength.) All you need to do next is to substitute the value to the following equation. speed = 250 Hz (6.0m) that should leave you with 1500 m/s which is very fast.