Answer:
a) A = 0.603 m
, b) a = 165.8 m / s²
, c) F = 331.7 N
Explanation:
For this exercise we use the law of conservation of energy
Starting point before touching the spring
Em₀ = K = ½ m v²
End Point with fully compressed spring
=
= ½ k x²
Emo = 
½ m v² = ½ k x²
x = √(m / k) v
x = √ (2.00 / 550) 10.0
x = 0.603 m
This is the maximum compression corresponding to the range of motion
A = 0.603 m
b) Let's write Newton's second law at the point of maximum compression
F = m a
k x = ma
a = k / m x
a = 550 / 2.00 0.603
a = 165.8 m / s²
With direction to the right (positive)
c) The value of the elastic force, let's calculate
F = k x
F = 550 0.603
F = 331.65 N
Becomes numb. Or begins to hurt
Answer;
30.6 m
Explanation;
All objects accelerate at the constant rate in the Earth's gravitational field. The gravitational acceleration, g = 9.8 m/s².
Distance traveled by an object falling down under a constant acceleration will be given the formula;
s = ut² + 1/2(gt²); but u the initial velocity is o
thus;
S =1/2(gt²)
= 0.5 × 9.81 × 2.5 ²
= 30.65
≈ 30.6 m
Answer:
Gamma rays occupy the short-wavelength end of the spectrum; they can have wavelengths smaller than the nucleus of an atom. Visible light wavesare one-thousandths the width of human hair--about a million times longer than gamma rays. Radio waves, at the long-wavelength end of the spectrum, can be many meters long.
Answer:
41.1 ÷ 40.0
Explanation:
Did you learn about Newton