Answer:
Option (B)
Explanation:
A lift chart usually refers to a graphical representation that is mainly used in order to improve the drawbacks of a mining model by making a comparison with any random guess, and also helps in determining the changes that occur in terms of lift scores.
It describes the binary classification of the problems associated with the mining activity. This type of chart is commonly used to differentiate the lift scores for a variety of models, and picking the best one out of all.
Thus, the correct answer is option (B).
Answer: They will NOT connect because like poles are facing each other, and like poles repel each other.
The goods and the services make up the basis of every economy. The goods can simply be defined as merchandise or possessions. The services can be defined as the actions through which help is provided, or work is done for someone else. Example of goods are the food and furniture, with the food being crucial for the survival of the people, while the furniture is an essential part of every home and its practicality and decor. Examples of services are teaching and car repairing. The teaching is crucial for the development of the societies, as through it the people get education, while the repairing of cars is very important as lot of people have them, can not afford to buy new ones all the time, and they need for their daily movement over longer distances.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Class 1 lever
Explanation:
In a class 1 lever, the fulcrum is placed between the effort and the load. This lever systems is the most common.
- The effort is the force input and the load is the force output
- The fulcrum is a hinge between the load and effort.
- Movement of the effort and load are in opposite directions.
- There are other classes of lever like the class 2 and 3.
- They all have different load, fulcrum and effort configurations
learn more:
Load related problems brainly.com/question/9202964
Torque brainly.com/question/5352966
#learnwithBrainly