Answer:
5. Is greater than mg, always
Explanation:
If the cone has an inclination of angle β, the sum of forces will be:
x-axis (centripetal axis):
N*sin β = m*ax where ax is the centripetal acceleration
y-axis:
N*cos β - m*g = m*ay where ay is the vertical acceleration. If the block starts falling down, ay will be negative. If the block starts sliding up, ay will be positive. If the block does not move up nor down, ay=0.
Solving for N:

If ay is positive or zero, N will be greater than mg. If ay is negative, N will be less than mg.
If the block is sliding along a horizontal circular path (not up, nor down), ay = 0, so N will always be greater than mg.
Answer:
5 miles per hour
Explanation:
if you divide 15 by 3 you get 5, therefore the student is going 5 miles per hour.
8a2-10ab+15b+10 Explaintion:
Answer:
B) Within an atom, an electron can have only particular energies.
Explanation:
As we know that electrons have energy but apart from electrons we know that protons and neutrons inside the nucleus of atom will also have energy in them.
rest all the statements are true as we have
A) Electrons orbit the nucleus rather like planets orbiting the Sun.
TRUE, because electrons can move in stationary orbit around the nucleus
C) Electrons can jump between energy levels in an atom only if they receive or give up an amount of energy equal to the difference in energy between the energy levels.
Difference amount of energy is lost or absorbed by the electron in form of photons
D) An electron has a negative electrical charge.
Charge of an electron is given as 
E) Electrons have very little mass compared to protons or neutrons
Mass of an electron is given as

mass of proton or neutron

Answer:
discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC source
Explanation:
Bulbs can emit light in several ways:
* When the emission is carried out by the heating of its filament, the bulb is called incandescent, in general its spectrum is similar to that of a black body, this is a continuous spectrum with a maximum dependent on the fourth power of the temperature of the filament.
* The emission can be by atomic transitions, in this case there is a discrete spectrum formed by the spectral lines of the material that forms the gas of the lamp, in general for the yellow emission the most used materials are mercury and sodium or a mixture of they.
Consequently, as discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC type