1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
8

A 1.5m wire carries a 6 A current when a potential difference of 61 V is applied. What is the resistance of the wire?

Physics
1 answer:
Alisiya [41]3 years ago
7 0

Resistance = (voltage) / (current)

For this piece of wire . . .

Resistance = (61 volts) / (6 Amperes)

Resistance = (61/6) (V/A)

<em>Resistance = (10 and 1/6) ohms</em>

Since you know the voltage and current, the length doesn't matter.

You might be interested in
A force of 100. newtons is used to move an object a distance of 15 meters with a power of 25 watts. Find the time it takes to do
Flauer [41]
<h3>It takes 60 seconds to do the work</h3>

<em><u>Solution:</u></em>

Given that,

Force = 100 newtons

Distance = 15 meters

Power = 25 watts

To find: time it takes to do the work

<em><u>Find the work done:</u></em>

work = force \times displacement\\\\work = 100\ newtons \times 15\ meters\\\\work = 1500\ joule

<em><u>Find the time taken</u></em>

power = \frac{work}{time}\\\\25\ watts = \frac{1500\ joule}{time}\\\\time = \frac{1500\ joule}{25\ watt}\\\\time = 60\ second

Thus it takes 60 seconds to do the work

3 0
3 years ago
When a potassium atom forms an ion, it loses one electron. What is the electrical charge of the potassium ion? *
Ganezh [65]
+1 An electron has a negative charge so losing a charge of -1 from an uncharged, or neutral, atom will leave an ion with a positive charge.
5 0
3 years ago
Read 2 more answers
What potential difference is required to cause 4.00 a to flow through a resistance of 330 ω?
Alisiya [41]
We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:
\Delta V = I R
where
\Delta V is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance

In our problem, I=4.00 A and R=330 \omega, so the potential difference is
\Delta V = IR=(4.00 A)(330 \omega)=1320 V
7 0
4 years ago
Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge b
Elena L [17]

Answer:

a) 0.167 μC/m^2

b) 1.887 * 10^4 V/m

Explanation:

Hello!

First let's find the surface charge density:

a)

Since thesatellite is metallic, the accumalted charge will be uniformly distribuited on its surface. Therefore the charge density σ will be:

σ = Q/A

Where A is the area of the satellite, which is:

A=4πr^2 = πd^2 = π(1.9m)^2

Therefore:

σ = (1.9)/(π (1.9)^2) μC/m^2 = 0.167 μC/m^2

Now let's calculate the electric field

b)

Just outside the surface of the satellite the elctric field will be:

E = σ/ε0

Where      ε0=8.85×10^−12 C/Vm

Therefore:

E = (0.167*10^-6 C/m^2) / (8.85*10^-12  C/Vm) = 0.01887 *10^6 V/m

E = 1.887 * 10^4 V/m

5 0
3 years ago
The answer to number 9 please
Delicious77 [7]
The magnitude is doubled. The direction doesn't change.
7 0
3 years ago
Other questions:
  • A Fathom is an old depth measure equal to 6 Feet How deep in meters is a 5_ fathom deep water channel​ show working out
    8·1 answer
  • Fossil fuels are..
    12·1 answer
  • A jet makes a landing traveling due east with a speed of 120 m/s .
    10·1 answer
  • Who’s good at algebra?
    10·2 answers
  • The empire state building is 1,450 feet tall. King Kong weighs 20 tons and he climbs to the very top. If he jumps off the top, w
    8·1 answer
  • The height of a student is 150cm. What is his height in metres???! Plz ans with solution
    5·2 answers
  • What is the momentum of a 10kg ball moving at a velocity of 4m/s east?​
    13·1 answer
  • I need hlep please help a brother out
    7·1 answer
  • What is the kinetic energy of a 14kg object traveling at 10m/s
    15·1 answer
  • A wave has wavelength of 8m and a speed of 360 m/s. What is the frequency of the wave?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!