1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
2 years ago
11

A green ball has a mass of 0.525 kg and a blue ball has a mass of 0.482 kg. A croquet player strikes the green ball and it gains

an initial velocity of 2.26 m/s. It then strikes the blue ball, which is initially at rest. After the collision, the green ball has a velocity of 1.14 m/s in the same direction. If the balls roll on a frictionless surface and the collision is head-on, what is the final velocity of the blue ball? (Round your answer to the nearest hundredths place.)
Physics
1 answer:
Gelneren [198K]2 years ago
4 0

Answer:

v' = 1.21 m/s

Explanation:

Mass of a green ball, m = 0.525 kg

Mass of a blue ball, m' = 0.482 kg

Initial velocity of green ball, u = 2.26 m/s

Initial velocity of blue ball, u' = 0 (at rest)

After the collision,

The final velocity of the green ball, v = 1.14 m/s

We need to find the final velocity of the blue ball after the collision if the collision is head on. Let v' is the final velcity of the blue ball. Using the conservation of momentum to find it :

mu+m'u'=mv+m'v'\\\\0.525 (2.26)+0=0.525 (1.14)+0.482v'\\\\0.588=0.482v'\\\\v'=\dfrac{0.588}{0.482}\\\\v'=1.21\ m/s

So, the final velocity of the blue ball is 1.21 m/s.

You might be interested in
Two concentric current loops lie in the same plane. The smaller loop has a radius of 3.4 cmcm and a current of 12 AA. The bigger
Free_Kalibri [48]

Answer:

Explanation:

Given that,

Current in loops are

i1 = 12A

i2 = 20A

The loops are 3.4cm apart

The magnetic field at the center is found to be zero, so when want to find the radius of bigger loop

Magnetic Field is given as

B= μoi/2πr

Where,

μo is a constant = 4π×10^-7 Tm/A

r is the distance between the two wires

i is the current in the wires

B is the magnetic field

NOTE

Field due to large loop should be equal to the smaller loop.

B1 = B2

μo•i1 / 2π•r1 = μo•i2 / 2π•r2

Then, μo, 2π cancels out, so we have

i1 / r1 = i2 / r2

Make r2 subject of formula

i1•r2 = i2•r1

r2 = i2•r1 / i2

r2 = 20×3.4/12

r2 = 5.67cm

The radius of the bigger loop is 5.67cm.

4 0
3 years ago
How much time does it take for a bird flying at a speed of 45 miles per hour to travel a distance
Marina CMI [18]

Answer:

40

Explanation:

5 0
2 years ago
A person drops a pebble of mass m1 from a height h, and it hits the floor with kinetic energy KE. The person drops another pebbl
Leona [35]
<h2>Answer:</h2>

<em>Hello, </em>

<h3><u>QUESTION)</u></h3>

<em>✔ We have: KE = PE (potential energy) </em>

<em>PE = m x g x h </em>

The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2  

PE1 = PE2 ⇔ PE1/PE2 = 1

\frac{m_1\times g\times h}{m_2\times g\times 4h} = 1 \\ \\  \frac{m_1}{m_2\times 4} = 1 \\ \\  \frac{m_1}{m_2} = 4

The mass m1 is therefore 4 times greater than that of the stone of mass m2.

 

8 0
2 years ago
Find the moment of inertia about each of the following axes for a rod that is 0.360 {cm} in diameter and 1.70 {m} long, with a m
mamaluj [8]

The complete question is;

Find the moment of inertia about each of the following axes for a rod that is 0.36 cm in diameter and 1.70m long, with a mass of 5.00 × 10 ^(−2) kg.

A) About an axis perpendicular to the rod and passing through its center in kg.m²

B) About an axis perpendicular to the rod and passing through one end in kg.m²

C) About an axis along the length of the rod in kg.m²

Answer:

A) I = 0.012 kg.m²

B) I = 0.048 kg.m²

C) I = 8.1 × 10^(-8) kg.m²

Explanation:

We are given;

Diameter = 0.36 cm = 0.36 × 10^(−2) m

Length; L = 1.7m

Mass;m = 5 × 10^(−2) kg

A) For an axis perpendicular to the rod and passing through its center, the formula for the moment of inertia is;

I = mL²/12

I = (5 × 10^(−2) × 1.7²)/12

I = 0.012 kg.m²

B) For an axis perpendicular to the rod and passing through one end, the formula for the moment of inertia is;

I = mL²/3

So,

I = (5 × 10^(−2) × 1.7²)/3

I = 0.048 kg.m²

C) For an axis along the length of the rod, the formula for the moment of inertia is; I = mr²/2

We have diameter = 0.36 × 10^(−2) m, thus radius;r = (0.36 × 10^(−2))/2 = 0.18 × 10^(−2) m

I = (5 × 10^(−2) × (0.18 × 10^(−2))^2)/2

I = 8.1 × 10^(-8) kg.m²

3 0
3 years ago
A carmaker has designed a car that can reach a maximum acceleration of 12 meters/second2. The car’s mass is 1,515 kilograms. Ass
Vlada [557]
1) 15 / 12 = 1.25 ratio
2) to increase acceleration  1.25 times (with same F, or same engine) you have to lower mass 1.25 times
3) 1515/1.25 = 1212 kg

choose A

6 0
2 years ago
Other questions:
  • A string is wrapped several times around the rim of a small hoop with a radius of 8.00 cm and mass 0.180 kg. The free end of the
    15·1 answer
  • A car travels from point a to point b, moving in the same direction but with a non-constant speed. the first half of the distanc
    15·2 answers
  • A system for specifying the precise of objects in space and time
    12·1 answer
  • In the Arctic, caribou and musk ox eat different kinds of plants, but the plants they eat typically grow in the same area. There
    8·2 answers
  • Which kinds of objects emit visible light in the electromagnetic spectrum?
    13·1 answer
  • Modern wind turbines are larger than they appear, and despite their apparently lazy motion, the speed of the blades tips can be
    15·1 answer
  • A chemist finds that when platinum is added to a reaction, the reaction speeds up. He thinks the platinum may be acting as a cat
    6·2 answers
  • The radius of the aorta in a test subject determined by MRI is 1.2 cm. At rest, his end diastolic volume is 120 mL and his end s
    7·1 answer
  • A bodybis thrown vertically upward with velocity of 30m/s calculate the the maximum height attained​
    9·2 answers
  • How many cm3 are there in 1 dm3?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!