Memorize this and you'll be able to do ALL of these: <em>1 kg = 1,000 g</em>
So if you have some grams, divide the number by 1,000 to get kilograms.
1,000 g = 1.000 kg
500 g = 0.500 kg
100 g = 0.100 kg
50 g = 0.050 kg
20 g = 0.020 kg
10 g = 0.010 kg
This question can be solved using the concept of friction energy.
The thermal energy change is b "258.4 J".
The change in thermal energy will be equal to the friction energy produced during the motion of the box.

where,
μ = coefficient of kinetic friction = 0.4
f = force applied = 38 N
d = distance traveled by the box = 17 m
Therefore,

<u>E = 258.4 J</u>
Learn more about friction energy here:
brainly.com/question/1343045?referrer=searchResults
Answer:
If the force remains the same, the acceleration would decrease
Explanation:
According to Newton's second law, the acceleration of an object is given by

where
F is the force applied to the object
m is the mass of the object
As we see from the formula, the acceleration a is inversely proportional to the mass, m. Therefore, if the force F remains constant, this means that if the mass of the skateboarder increases, then the acceleration will decrease.
Answer:
The \: parts \: of \: the \: model \\ airplane \: are \: in \: the \\ same \: proportions \: as \: the \\ actual \: airplane.
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm