Answer:
hm step by step try to figure it 9ut
Answer:
Explanation:
Filtration followed by evaporation:
To separate the mixture of sand and sugar, it is best to use the separation technique of filtration then evaporation.
Pour the water into the mixture. The sugar will dissolve with time in the water. Sand is made up of quartz and does not dissolve in water.
After the dissolution, filter the solution to separate the sand using a filter paper.
Dry the sand thereafter then proceed to evaporate the sugar with water solution. Evaporation will turn water into vapor and the sugar crystals will be left behind.
Answer:
Hi. im an online tutor and i ca help you with all your assignments . check out our wesite https://toplivewriters.com
Explanation:
A because the end result of this reaction is a radical created by the oxidation of an aromatic amine's or phenol's ring substituent. The hydroxyl group of a phenol acts as the ring substituent in this situation.
<h3>Which two enzyme types are required for the two-step process of converting cytosine to 5 hmC?</h3>
- The methyl group is transferred to cytosine in the first stage, and it is then hydroxylated in the second step.
- Therefore, a transferase and an oxidoreductase are the two groups of enzymes required.
<h3>Which kind of interaction between proteins and the dextran column material is most likely to take place?</h3>
- Hydrogen bonding because the glucose's OH would form an H-bond with any exposed polar side chains on a protein surface.
<h3>Two out of the four proteins would adhere to a cation-exchange column at what buffer pH? </h3>
- Only positively charged proteins can bind to a cation-exchange column, and this can only happen when the pH is lower than the pI.
- Proteins A and B would both be positively charged at pH 7.0.
To learn more about hydroxyquinoline visit:
brainly.com/question/26102339
#SPJ4
Answer:
3.329 g
Explanation:
First you need to determine the molar mass of H2S which is 34.1 g/mol.
With that we know that to find the moles of H2S we just divide the mass of sample with the molar mass.
3.54 g / 34.1 g/mol = 0.103812317 mol of H2S
This means that there is also 0.103812317 mol of sulfur since there is 1 mole of sulfur per 1 mole of H2S.
The molar mass of sulfur is 32.065 g/mol and to find the mass of sulfur you need to multiply the molar mass with the moles of the compound.
0.103812317 mol * 32.065 g/mol = 3.329 g of sulfur
Let me know if you get something else or if something is unclear in the comments so that we can figure it out.