The equilibrium constant, Kc=0.026
<h3>Further explanation</h3>
Given
1.72 moles of NOCI
1.16 moles of NOCI remained
2.50 L reaction chamber
Reaction
2NOCI(g) = 2NO(g) + Cl2(g).
Required
the equilibrium constant, Kc
Solution
ICE method
2NOCI(g) = 2NO(g) + Cl2(g).
I 1.72
C 0.56 0.56 0.28
E 1.16 0.56 0.28
Molarity at equilibrium :
NOCl :

NO :

Cl2 :

![\tt Kc=\dfrac{[NO]^2[Cl_2]}{[NOCl]^2}\\\\Kc=\dfrac{0.224^2\times 0.112}{0.464^2}=0.026](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D%5C%5C%5C%5CKc%3D%5Cdfrac%7B0.224%5E2%5Ctimes%200.112%7D%7B0.464%5E2%7D%3D0.026)
Carbs build muscle and muscle is good
The bathtub of water would melt the most ice because it has a larger area
The periodic table is an important but rather dry scientific tool. It lists all the chemical elements, ordered by their atomic numbers. Elements with similar behavior are grouped in the same column (called a group), with metals generally on the left and non-metals (gases) on the right. Rows are called “periods” - hence, periodic table.
Is this what you looking for ???
Answer:
15g
Explanation:
The equation for the reaction is given below:
CaO + SO2 —> CaSO3
Molar Mass of CaO = 40 + 16 = 56g/mol
Molar Mass of CaSO3 = 40 + 32 + (16x3) = 40 + 32 + 48 = 120g/mol
From the equation,
56g of CaO produced 120g of CaSO3.
Therefore, 7g of CaO will produce = (7 x 120)/56 = 15g of CaSO3
Therefore, 15g of CaSO3 is produce