Answer:
Solution for A gas has a volume of 340.0 mL at 45.90 degree celsius. What is the new temperature of the gas, in kelvin, if the volume increased to 550.0 mL.
Missing: oC. | Must include: oC.
Explanation:
0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.
Lets name the unknown metal as M. Cation would be M³⁺.
the molecular formula of the compound is M₂(SO₄)₃
the mass of one mole - (molar mass of M x2 + 3 x molar mass of SO₄²⁻)
= 2M + 96 x 3
= 2M + 288
In 1 mol if there's 72.07% of sulphate ,
then 72.07 % corresponds to 288 g
1 % is then - 288/72.07
100 % of the compound - 288/72.07 x 100
molar mass of the compound - 399.6 g/mol
mass of 2M - 399.6 - 288 = 111.6 g
molar mass of M - 111.6 /2 = 55.8 g/mol
the element with molar mass of 55.8 is Fe.
Unknown metal is iron(III) , Fe³⁺
A model aids in visualizing a molecule and understanding its properties.
In chemistry, models of molecules give us an idea about the arrangement of atoms in the molecules. Usually, the arrangement of atoms in a molecules determines the kind of reactions that the molecule can undergo.
Models are three dimensional representations of what molecules look like. They help us to conceptualize the possible orientation of atoms and groups in the molecule.
Looking at the model of H2SO4, it becomes easier to understand the chemical and physical properties of the compound owing to the arrangement of atoms.
Learn more: brainly.com/question/12000914
88383838882828282829928282992928283838388383839292