Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
Since there is 101 Tickets,
Let S + A = 101
1.50S + 2.50A = $186.50
Adults + Students = 101
$186. 50 = $2.50 Adults + $1.50 Students
Answer is 35 Adults, and 66 Students.
Hope that helps!!!
Answer:56.57
Step-by-step explanation:
πr2
2
=
22
7
⋅(6)2
2
=56.57
The given equation is: 
To find the line perpendicular to it, we interchange coefficients and switch the signs of one coefficient.
The equation to a line perpendicular to it is:
$ 2y-x=c$
where, $c$ is some constant we have determine using the condition given.
It passes through $(2,-1)$
Put the point in our equation:
$2(-1)-(2)=c$
$c=-2-2$
$c=-4$
The final equation is:
$\boxed{ 2y-x=-4}$