M, mass=84 kg
height, h=3.9m
gravity, g= 9.8m/s2
W = F . d
F=force
d=Displacement
W=work done by force
Now by putting the values
F= m g (Acting downward )
d= h (Upward)
W= m g h ( work done against the force)
W= 84•9.8•3.9J
W= 3210.48
Therefore the answer will be 3210.48J.
Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
<span>
The taut guitar string haspotencial energy which we can see in action.</span> <span>· so option a is correct.</span>
Answer:
15m/s
Explanation:
add the two speeds and divide by 2
10+20=30
30/2=15
Scientific Method: Because, they use their method which the scientific one to solve investigations.