Answer:
The angular velocity of the propeller is 2.22 rad/s.
Explanation:
The angular velocity (ω) of the propeller is:
Where:
θ: is the angular displacement = 10.6 revolutions
t: is the time = 30 s

Therefore, the angular velocity of the propeller is 2.22 rad/s.
I hope it helps you!
Answer:
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Explanation:
Answer:
Decreases
Explanation:
When an electron is released from rest in a region of space with nonzero electric field. And when the electrons move the electric potential energy of the system decreases because the kinetic energy increases and for the total energy to remain constant the potential energy must reduce.
An electron is accelerated in an electric field meaning its kinetic energy increases.
The correct answer is:
Does the measurement include direction?
In fact, the basic difference between a scalar and a vector is that a scalar does not have a direction (it only has a magnitude), while a vector has both magnitude and direction. Therefore, if the answer to this question is "yes", it means the quantity is a vector, otherwise it is a scalar.
Answer: 0 m
Explanation:
Let's begin by stating clear that movement is the change of position of a body at a certain time. So, during this movement, the body will have a trajectory and a displacement, being both different:
The trajectory is the <u>path followed by the body</u> (is a scalar quantity).
The displacement is <u>the distance in a straight line between the initial and final position</u> (is a vector quantity).
According to this, in the description Matthew's home is placed at 0 on a number line, then he moves 10 m to the park (this is the distance between the park and Mattew's home), then 15 m to the movie theatre until he finally comes back to his home (position 0). So, in this case we are talking about the <u>path followed by Matthew</u>, hence <u>his trajectory</u>.
However, if we talk about Matthew's displacement, we have to draw a straight line between Matthew's initial position (point 0) to his final position (also point 0).
Now, being this an unidimensional problem, the displacement vector for Matthew is 0 meters.