C I completed the same quiz
The formula for momentum is p = m*v
The conservation of momentum suggests:
m*vi = m*vf (initial mass times initial velocity = final mass times final velocity or initial momentum = final momentum)
(0.0010)(52.2) = (0.0010 + 3.3)vf
vf = (0.0010)(52.2)/(0.0010 + 3.3) = 0.0522/3.301 ≈ 0.01581 m/s
To the nearest thousandth ≈ .016 m/s
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Answer:
conductor
Does not easily transfer electricity
Answer:
what are they ill have a look
Explanation: