1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

Explain what is happening in this picture

Physics
1 answer:
Assoli18 [71]3 years ago
7 0

Answer:

in this video waves are coming up for the BOTTOM to the top of the sandbar

You might be interested in
A car (mass = 1090 kg) is traveling at 30.4 m/s when it collides head-on with a sport utility vehicle (mass = 2880 kg) traveling
Thepotemich [5.8K]

Answer:

The sport utility vehicle was traveling at V2= 11.5 m/s.

Explanation:

m1= 1090 kg

V1= 30.4 m/s

m2= 2880 kg

V2= ?

m1*V1 = m2*V2

V2= (m1*V1)/m2

V2= 11.5 m/s

7 0
3 years ago
1.10) For a fixed mass of gas at constant temperature, if the volume of the gas (V) increases to twice its original amount, the
Aliun [14]
B. 1/2p
From the relation
P1V1=P2V2
P2=P1V1/V2
If everything equals one
P2=1*1/2(1)
That would equal 1/2
I hope this helps
Please mark as brainliest
7 0
2 years ago
Read 2 more answers
Which element will have the greatest attraction for the calcium electrons (if they could combine)? N P As
alisha [4.7K]
N is your answer.....
7 0
3 years ago
Read 2 more answers
Convert i) 1 microgram into kilogram<br>ii) 100 decameter into cm​
Kobotan [32]

Answer:

1×10^-9kilogram

100 decameter =100000cm

3 0
2 years ago
Read 2 more answers
Please someone help, I’m very confused and it’s due soon, thanks
Anit [1.1K]

Answer:

  1. 1 s
  2. 19.6 m
  3. 2 s
  4. 0.8 m/s^2
  5. 28 m/s
  6. 79 m/s
  7. 0.37 s
  8. 26 m/s
  9. 242 m/s
  10. 19,930 m

Explanation:

In physics, many of the relationships between speed, distance, and acceleration are tied up in the equations for potential and kinetic energy. For an object of mass M* at height h in a gravity field with acceleration g, the potential energy is

  PE = Mgh

At velocity v, the kinetic energy of the object is ...

  KE = 1/2Mv^2

When an object is dropped or launched from rest, the height and velocity are related by the fact that kinetic energy gets translated to potential energy, or vice versa. This gives rise to ...

  PE = KE

  Mgh = (1/2)Mv^2

The mass (M) can be factored out of this, so we have ...

  2gh = v^2

This can be solved for height:

  h = v^2/(2g) . . . . [eq1]

or for velocity:

  v = √(2gh) . . . . [eq2]

__

When acceleration is constant, as assumed here, the velocity changes linearly (to/from 0). So, over the time of travel, the average velocity is half the final velocity. That is,

  t = 2h/v

Depending on whether you start with h or with v, this resolves to two more equations:

  t = 2(v^2/(2g))/v = v/g . . . . [eq3]

  t = 2h/(√(2gh)) = √(4h^2/(2gh)) = √(2h/g) . . . . [eq4]

The last of these can be rearranged to give distance as a function of time:

  h = gt^2/2 . . . . [eq5]

or acceleration as a function of time and distance:

  g = 2h/t^2 . . . . [eq6]

__

These 6 equations can be used to solve the problems posed. Just "plug and chug." For problems in Earth's gravity, we use g=9.8 m/s^2. (You may want to keep these equations handy. Be aware of the assumptions they make.)

_____

* M is used for mass in these equations so as not to get confused with m, which is used for meters.

_____

1) Use [eq4]: t = √(2·6 m/(9.8 m/s^2)) ≈ 1.107 s ≈ 1 s

__

2) Use [eq5]: h = (9.8 m/s^2)(2 s)^2/2 = 19.6 m

__

3) Use [eq4]: t = √(25 m/(4.9 m/s^2)) ≈ 2.259 s ≈ 2 s

__

4) Use [eq6]: g = 2(10 m)/(5 s)^2 = 0.8 m/s^2

__

5) Use [eq2]: v = √(2·9.8 m/s^2·40 m) = 28 m/s

__

6) Use [eq2]: v = √(2·9.8 m/s^2·321 m) ≈ 79.32 m/s ≈ 79 m/s

__

7) Using equation [eq3], we will find the time until Tina reaches her maximum height. Her actual off-the-ground total time is double this value. Using [eq3]: t = v/g = (1.8 m/s)/(9.8 m/s^2) = 9/49 s. Tina is in the air for double this time:

  2(9/49 s) ≈ 0.37 s

__

8) Use [eq2]: v = √(2·9.8 m/s^2·33.5 m) ≈ 25.624 m/s ≈ 26 m/s

__

9) Use [eq2]: v = √(2·9.8·3000) m/s ≈ 242.49 m/s ≈ 242 m/s

(Note: the terminal velocity in air is a lot lower than this for an object like a house.)

__

10) Use [eq1]: h = (625 m/s)^2/(2·9.8 m/s^2) ≈ 19,930 m

_____

<em>Additional comment</em>

Since all these questions make use of the same equation development, I have elected to answer them. Your questions are more likely to be answered if you restrict your posts to 3 or fewer questions each.

5 0
3 years ago
Other questions:
  • A projectile is thrown at an angle 30° from horizontal. Which statement about its vertical component of velocity is true?
    11·2 answers
  • in which activity is no work done? A. pushing a shopping cart B. climbing stairs C. holding a brick D. lifting a book
    7·1 answer
  • A block of mass m = 0.13 kg is set against a spring with a spring constant of k1 = 623 N/m which has been compressed by a distan
    8·1 answer
  • 2. Which one of the following calculations could be used to find the
    14·1 answer
  • Ultraviolet rays from the sun are able to reach Earth's surface because-
    14·1 answer
  • Describe the direction heat always flows in
    6·1 answer
  • A student is throwing a ball. She throws the ball up with her left hand, it passes over her head, and she catches it with her ri
    11·1 answer
  • This is my last assignment plz help
    6·2 answers
  • The CEO, ellen misk, left her martian office but accidentally left a cylindricall can of coke (3.1 inches in diameter, 5.42 inch
    7·1 answer
  • Friction helps your vehicle stop quickly.<br> A. TRUE<br> B. FALSE
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!