Therefore, if the block moves from its position of maximum spring stretch to maximum spring compression in 0.25 s, the time required for a full cycle is twice as much; T = 0.5 s.
Explanation:
The eardrum vibrates from the incoming sound waves and sends these vibrations to three tiny bones in the middle ear. These bones are called the malleus, incus, and stapes.
Answer:
z1/z2
Explanation:
we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.
using the boltzman distribution the probability of finding a particle in energy state

we have
gi to be degeneration of the ith state
ei to be energy of ith state
summation

We have R to be equal to

To solve the problem it is necessary to apply the concepts related to Force of Friction and Tension between the two bodies.
In this way,
The total mass of the cars would be,


Therefore the friction force at 29Km / h would be,




In this way the tension exerts between first car and locomotive is,



Therefore the tension in the coupling between the car and the locomotive is 
Answer:
power requirement is 23.52 ×
W
Explanation:
given data
flow rate q = 2 m³/s
elevation h = 1200 m
density of the water ρ = 1000 kg/m³
to find out
power requirement
solution
we will get power by the power equation that is
power = ρ× Q× g× h ...................1
put here all value we get power
power = ρ× Q× g× h
power = 1000 × 2 × 9.8 × 1200
power = 23.52 ×
so power requirement is 23.52 ×
W