The empirical formula of the compound obtained from the question given is NaBrO₃
<h3>Data obtained from the question </h3>
- Sodium (Na) = 15.24%
- Bromine (Br) = 52.95%
- Oxygen (O) = 31.81%
<h3>How to determine the empirical formula </h3>
The empirical formula of the compound can be obtained as illustrated below:
Divide by their molar mass
Na = 15.24 / 22.99 = 0.663
Br = 52.95 / 79.90 = 0.663
O = 31.81 / 16 = 1.988
Divide by the smallest
Na = 0.663 / 0.663 = 1
Br = 0.663 / 0.663 = 1
O = 1.988 / 0.663 = 3
Thus, the empirical formula of the compound is NaBrO₃
Learn more about empirical formula:
brainly.com/question/24297883
Direct electron transfer from a a singlet reduced species to a triplet oxidizing species is quantum-mechanically forbidden.
<h3><u>Transfer from singlet to triplet:</u></h3>
- Either an excited singlet state or an excited triplet state will occur when an electron in a molecule with a singlet ground state is stimulated (through radiation absorption) to a higher energy level.
- All electron spins in a molecule electronic state known as a singlet are coupled.
- In other words, the ground state electron and the stimulated electron's spin are still coupled (a pair of electrons in the same energy level must have opposite spins, per the Pauli exclusion principle).
- The excited electron and ground state electron are parallel in a triplet state because they are no longer coupled (same spin).
- It is less likely that a triplet state would arise when the molecule absorbs radiation since excitation to a triplet state necessitates an additional "forbidden" spin transfer.
To view more questions on quantum mechanism, refer to:
brainly.com/question/13639384
#SPJ4
Answer:
argon
Explanation:
argon inhibits evaporation, and prevents corrosion
Answer:
The answer to your question is P = 1.64 atm
Explanation:
Data
Volume = 2.5 x 10⁷ L
Temperature = 22°C
Pressure = ?
Moles = 1.7 x 10⁶
R = 0.082 atm L/ mol°K
Process
1.- Convert temperature to °K
Temperature = 22 + 273
= 295°K
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for P
P = nRT / V
- Substitution
P = (1.7 x 10⁶)(0.082)(295) / 2.5 x 10⁷
- Simplification
P = 41123000 / 2.5 x 10⁷
- Result
P = 1.64 atm