Answer:
6.5<6.05, this one is false
Step-by-step explanation:
look at the Statement and the numbers, it is false through my calculation
Answer:
The mean of the distribution of sample means is 27.6
Step-by-step explanation:
We are given the following in the question:
Mean, μ = 27.6
Standard Deviation, σ = 39.4
We are given that the population is a bell shaped distribution that is a normal distribution.
Sample size, n = 173.
We have to find the mean of the distribution of sample means.
Central Limit theorem:
- It states that the distribution of the sample means approximate the normal distribution as the sample size increases.
- The mean of all samples from the same population will be approximately equal to the mean of the population.
Thus, we can write:

Thus, the mean of the distribution of sample means is 27.6
We are given
Vertical asymptotes:
Firstly, we will factor numerator and denominator
we get

We can see that (x-3) is common in both numerator and denominator
so, we will only set x+3 to 0
and then we can find vertical asymptote


Hole:
We can see that (x-3) is common in both numerator and denominator
so, hole will be at x-3=0

Horizontal asymptote:
We can see that degree of numerator is 2
degree of denominator is also 2
for finding horizontal asymptote, we find ratio of leading coefficients of numerator and denominator
and we get
y=1
now, we can draw graph
Graph: