Answer:
7.50 m/s^2
Explanation:
The period of a pendulum is given by:
(1)
where
L = 0.600 m is the length of the pendulum
g = ? is the acceleration due to gravity
In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:

And the period is the reciprocal of the frequency:

And by using this into eq.(1), we can find the value of g:

Answer:
<h2>9.8 m/s²</h2>
Explanation:
<h2>Since the ball rises for 2.5 s, the time to fall is 2.5 s. The acceleration is 9.8 m/s2 everywhere, even when the velocity is zero at the top of the path. Although the velocity is zero at the top, it is changing at the rate of 9.8 m/s² downward.</h2>
Answer:
The transfer of heat by the movement of fluid is called Convection Heat Transfer
Explanation:
Heat transfer by convection is the transfer of heat by fluid transport from one place to another, such that convection takes place when the heat that comes in contact of fluid containing body is moved to other parts of the container by the transporting fluid
Heat is transferred within a fluid medium mainly by convection (movement of heat by the transfer of fluid particles in the medium)
Convection heat transfer is a combination of conduction and advection heat transfer
Answer:
0.358Kg
Explanation:
The potential energy in the spring at full compression = the initial kinetic energy of the bullet/block system
0.5Ke^2 = 0.5Mv^2
0.5(205)(0.35)^2 = 12.56 J = 0.5(M + 0.0115)v^2
Using conservation of momentum between the bullet and the block
0.0115(265) = (M + 0.0115)v
3.0475 = (M + 0.0115)v
v = 3.0475/(M + 0.0115)
plugging into Energy equation
12.56 = 0.5(M + 0.0115)(3.0475)^2/(M + 0.0115)^2
12.56 = 0.5 × 3.0475^2 / ( M + 0.0115 )
12.56 = 0.5 × 9.2872/ M + 0.0115
12.56 = 4.6436/ M + 0.0115
12.56 ( M + 0.0115 ) = 4.6436
12.56M + 0.1444 = 4.6436
12.56M = 4.6436 - 0.1444
12.56 M = 4.4992
M = 4.4992÷12.56
M = 0.358 Kg