1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
3 years ago
5

It is known that the kinetics of recrystallization for some alloy obeys the Avrami equation, andthat the value of n in the expon

ential is 5.0. If, at some temperature, the fraction recrystallized is0.30 after 100 min, determine the rate of recrystallization at this temperature.
Physics
1 answer:
trapecia [35]3 years ago
3 0

Answer:8.76\times 10^{-3} min^{-1}

Explanation:

Given

n=5

0.3 fraction recrystallize after 100 min

According to Avrami equation

y=1-e^{-kt^n}

where y=fraction Transformed

k=constant

t=time

0.3=1-e^{-k(100)^5}

e^{-k(100)^5} =0.7

Taking log both sides

-k\cdot (10^{10}=\ln 0.7

k=3.566\times 10^{-11}

At this Point we want to compute t_{0.5}\ i.e.\ y=0.5

0.5=1-e^{-kt^n}

0.5=e^{-kt^n}

0.5=e^{-3.566\times 10^{-11}\cdot (t)^5}

taking log both sides

\ln 0.5=-3.566\times 10^{-11}\cdot (t)^5

t^5=1.943\times 10^{10}

t=114.2 min

Rate of Re crystallization at this temperature

t^{-1}=8.76\times 10^{-3} min^{-1}

You might be interested in
A car moving at a velocity of 25m/s, so how much distance it will travel in 5 seconds?
denpristay [2]

Answer:

125 meters

Explanation:

5s= s*5 so 25*5=125 m

3 0
3 years ago
In an electrochemical cell, the anode is ____.
harkovskaia [24]
A) the electrode at which oxidation takes place
3 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
DESCRIBE THE REQUIREMENTS OF AN INTERNET CONNECTION?<br>please tell me the answer​
AlekseyPX

Answer: The basic requirements for connecting to the Internet are a computer device, a working Internet line, and the right modem for that Internet line. In addition, software programs such as Internet browsers, email clients, Usenet clients, and other special applications are needed in order to access the Internet.

Explanation: brainleist pls :)

4 0
3 years ago
A ball is dropped off the balcony of a hotel room and it takes 2.8s to fall to the ground . how high above the ground is the bal
RideAnS [48]

The height of the ball above the ground is 38.45 m

First we will calculate the velocity of the ball when it touch the ground by using first equation of motion

v=u+gt

v=0+9.81×2.8

v=27.468 m/s

now the height of the ground can be calculated by the formula

v=√2gh

27.468=√2×9.81×h

h=38.45 m

5 0
3 years ago
Other questions:
  • ADAM TAKES THE BUS ON SCHOOL FIELD TRIP. THE BUS ROUTE ITS SPLIT INTO 5 LEGS.
    15·1 answer
  • A car moved 60 km East and 90 km West. What is the displacement?
    12·1 answer
  • How does Static Electricity happen? Please provide 3 Real Life Examples of Electro Static Electricity.
    5·1 answer
  • Can someone please help
    15·1 answer
  • The slope of a velocity time graph will give___
    10·1 answer
  • Block A is also connected to a horizontally-mounted spring with a spring constant of 281 J/m2. What is the angular frequency (in
    11·1 answer
  • Ano ang pagkain a ng Bugtong sa Palaisipan?
    8·1 answer
  • Since sound is a mechanical wave it needs a ...... to travel through
    5·1 answer
  • You have 50L of water, it froze. So find its new volume. Density of water is 1000kg/m^3 or 1kg/L, density of ice is 920kg/m^3 or
    12·1 answer
  • Helpppppppp pleaseeeee!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!