Answer:
<h2>
B. Switch</h2>
Explanation:
<u>A device designed to open or close a circuit under controlled conditions is called a switch. The terms “open” and “closed” refer to switches as well as entire circuits. An open switch is one without continuity: current cannot flow through it.</u>
<h2><u>
Hope this helps! Please consider marking brainliest!! </u></h2>
The characteristics of the diffraction phenomenon allow to find the result for the shape of the points of light that you pass the tree is:
-
The shape of the dots is circular because it is in the range of far-field diffraction.
Diffraction is the phenomenon where the undulatory part of the light becomes evident, it is the interference of the waves that make up each ray of light, for this phenomenon to occur it must be fulfilled that the wavelength is of the order of the space where pass the light.
In the leafy tree it has many leaves, but there are spaces between them, some of these spaces are small and it fulfills the diffraction condition, therefore we see bright spots and not a continuous shadow.
Diffraction can be classified depending on the distance to the observer:
- Near field or fresnel. In this case the distance from the observer is small and we can see the shape of the object that creates the diffraction.
- Far field or Fraunhoger. In this case the distance between the obstacle (leaves) and the person is great, here the information on the shape of things is lost and we have two observable forms. Lines for the case of slits and circles for the case of objects with a closed shape.
In this case, the distance from the leaves to the observer is large, therefore we are in the case of far-field diffraction and since the edge of the leaves that forms the diffraction is closed, the observable shape is a circle.
In conclusion using the characteristics of the diffraction phenomenon we can find the result for the shape of the points of light that pass the tree is:
-
The shape of the dots is circular because it is in the range of far-field diffraction.
Learn more about diffraction here: brainly.com/question/20140459
Answer:
The time after which the two stones meet is tₓ = 4 s
Explanation:
Given data,
The height of the building, h = 200 m
The velocity of the stone thrown from foot of the building, U = 50 m/s
Using the II equation of motion
S = ut + ½ gt²
Let tₓ be the time where the two stones meet and x be the distance covered from the top of the building
The equation for the stone dropped from top of the building becomes
x = 0 + ½ gtₓ²
The equation for the stone thrown from the base becomes
S - x = U tₓ - ½ gtₓ² (∵ the motion of the stone is in opposite direction)
Adding these two equations,
x + (S - x) = U tₓ
S = U tₓ
200 = 50 tₓ
∴ tₓ = 4 s
Hence, the time after which the two stones meet is tₓ = 4 s
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²