Answer:
(a) Workdone = -27601.9J
(b) Average required power = 1314.4W
Explanation:
Mass of hoop,m =40kg
Radius of hoop, r=0.810m
Initial angular velocity Winitial=438rev/min
Wfinal=0
t= 21.0s
Rotation inertia of the hoop around its central axis I= mr²
I= 40 ×0.810²
I=26.24kg.m²
The change in kinetic energy =K. E final - K. E initail
Change in K. E =1/2I(Wfinal² -Winitial²)
Change in K. E = 1/2 ×26.24[0-(438×2π/60)²]
Change in K. E= -27601.9J
(a) Change in Kinetic energy = Workdone
W= 27601.9J( since work is done on hook)
(b) average required power = W/t
=27601.9/21 =1314.4W
Answer:
b-testing
Explanation:
First would be observation/research. Then the hypothesis. After that you would test your theory, conduct experiments. And finally, your conclusion- what you got from the whole process basically.
Hope this helps.
Answer:
Flux is 21 Nm^2/C.
Explanation:
Electric field, E = 6 N/C along X axis
Electric filed vector, E = 6 i N/C
Area, A = 4 square meter
Area vector

The flux is given by

Answer:
0.5 m/s²
Explanation:
according to Newton's second law, we are goven a relationship between force, mass and acceleration, with the formula:
F = m×a
F for force
m for mass
a for acceleration
we use the given data and get:
20 = 40×a
we find a=20/40=0.5m/s²
The formula for velocity is distance divided by time, or d/t. The distance is 500 km and the time is 1.2 hours. 500/1.2 is 416.6 km/hr.