Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
Answer:
NaOBr (or) Na⁺ ⁻OBr
Explanation:
The Oxo-Acids of Bromine are as follow,
Hypobromous Acid = HOBr
Bromous Acid = HOBrO
Bromic Acid = HBrO₃
Perbromic Acid = HBrO₄
When these acids are converted to their conjugate bases their names are as follow,
Hypobromite = ⁻OBr
Bromite = ⁻OBrO
Bromate = ⁻OBrO₂
Perbromate = ⁻OBrO₃
According to rules, the positive part of ionic compound is named first and the negative part is named second. So, Sodium Hypobromite has a chemical formula of Na⁺ ⁻OBr or NaOBr.
<span>The answer is
101.1032 g/mol</span>
The correct response is A. Only the Fe is unbalanced.