Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
CnH2n since the equivalent unsaturation is equal with 1
Answer:
i'd say the second choice.
Explanation:
the rise in temperature causes the particles to vibrate causing motion. they collide thus resulting to the weakening of the particles.
hope it is of use to you.
Answer:
89 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.97 atm
- Initial volume (V₁): 105 L
- Initial temperature (T₁): 318 K
- Final pressure (P₂): 1.05 atm
- Final temperature (T₂): 293 K
Step 2: Calculate the final volume of the weather balloon
If we assume that the gas inside the balloon behaves as an ideal gas, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 0.97 atm × 105 L × 293 K / 318 K × 1.05 atm = 89 L
Answer:
M = 3.69 M.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the molar concentration of the 1.29 moles of KCl in 350 mL of solution by recalling the mathematical definition of molarity as the division of the moles by the volume in liters, in this case 0.350 L; thus, we proceed as follows:

Which gives molar units, M, or just mol/L.
Regards!