In a high-mass star, hydrogen fusion occurs via the CNO (Carbon-Nitrogen-Oxygen) cycle.
According to the life cycle of a star, there are three main phases in the life of a star: The initial phase (a quick phase), short phase or supergiant phase and death phase or supernova explosion.
the CNO cycle means Carbon-Nitrogen-Oxygen cycle and this process tale place during main sequence phase.
In this phase, hydrogen fuses into helium as a result of six different reaction taking place inside a star.
The first step of the sequence begins when the nucleus of carbon 12 isotope emits gamma rays after capturing a proton and produces nitrogen-13.
This whole cycle is known as stellar nucleosynthesis.
If you need to learn more about Carbon-Nitrogen Cycle click here:
brainly.com/question/13022835
#SPJ4
Iron filings can be attracted by the magnet whereas salt can not. So the mixture can be separated by a magnet
Answer:
pH=2.34
Explanation:
HBr -> H + Br
The dissociation it's complete, for that reason the concentration of the products is the same of HBr
[H+]=[Br-]=0.00234 M
pH= - log (0.00234)=2.34
The rate of a reaction would be one-fourth.
<h3>Further explanation</h3>
Given
Rate law-r₁ = k [NO]²[H2]
Required
The rate of a reaction
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
Can be formulated:
Reaction: aA ---> bB

or

The concentration of NO were halved, so the rate :
![\tt r_2=k[\dfrac{1}{2}No]^2[H_2]\\\\r_2=\dfrac{1}{4}k.[No]^2[H_2]\\\\r_2=\dfrac{1}{4}r_1](https://tex.z-dn.net/?f=%5Ctt%20r_2%3Dk%5B%5Cdfrac%7B1%7D%7B2%7DNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dk.%5BNo%5D%5E2%5BH_2%5D%5C%5C%5C%5Cr_2%3D%5Cdfrac%7B1%7D%7B4%7Dr_1)