This question is asking you to determine if individual atoms or systems, or both have these types of energy. A system would be "all the molecules or atoms" whereas an individual atom is "each of the molecules or atoms."
Answers:
A. All the molecules or atoms in motion have kinetic energy.
B. Each molecule or atom in motion has kinetic energy.
D. All the molecules or atoms in motion have thermal energy.
The only incorrect answer is C because individual atoms don't have thermal energy, only when they interact with other atoms. Still, atoms do have kinetic energy, which has the potential to turn into heat energy in these interactions.
Hope this helps!
Answer:
Yes
Explanation:
Kinetic energy is K.E1/2mv2 so that means it is directly proportional to mass and velocity.
The question seems to be what is an equilibrant force.
The answer is "an added force that produces equilibrium.
Here you have more insight:
<span>an object that has no net force acting on it? This object indeed is in equilibrium but the object is not the equilibran force.
the reaction force in an action-reaction pair of forces?
the reaction force is not an equilibrant force. The reaction force exists always but equilibrium is only possible if the net force is cero.
an added force that produces equilibrium? this is the right answer.</span>
Answer:
1.832 kgm^2
Explanation:
mass of potter's wheel, M = 7 kg
radius of wheel, R = 0.65 m
mass of clay, m = 2.1 kg
distance of clay from centre, r = 0.41 m
Moment of inertia = Moment of inertia of disc + moment f inertia of the clay
I = 1/2 MR^2 + mr^2
I = 0.5 x 7 x 0.65 x 0.65 + 2.1 x 0.41 x 0.41
I = 1.47875 + 0.353
I = 1.832 kgm^2
Thus, the moment of inertia is 1.832 kgm^2.
Answer:
F = 32.28 N
Explanation:
For this exercise we must use the rotational equilibrium relation
Σ τ = 0
In the initial configuration it is in equilibrium, for which all the torque and forces are compensated. By the time the payment lands on the bar, we assume that the counter-clockwise turns are positive.
W_bird L / 2 - F_left 0.595 - F_right 0.595 = 0
we assume that the magnitude of the forces applied by the hands is the same
F_left = F_right = F
W_bird L / 2 - 2 F 0.595 = 0
F =
we calculate
F = 0.560 9.8 14.0 /2.38
F = 32.28 N