The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;

The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;


Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer:
a=2.378 m/s^2
Explanation:
a=Δv/Δt------eq(1)
Δv=Vf-Vi=120 km/h-0 km/h=120 km/h
or Δv=33.3 m/sec
or time=t=14s
putting values in eq(1)
a=33.3/14
a=2.378 m/s^2
The answer is c you got to look for answers that make sense
Answer:
v = 10 m/s
Explanation:
Let's assume the wheel does not slip as it accelerates.
Energy theory is more straightforward than kinematics in my opinion.
Work done on the wheel
W = Fd = 45(12) = 540 J
Some is converted to potential energy
PE = mgh = 4(9.8)12sin30 = 235.2 J
As there is no friction mentioned, the remainder is kinetic energy
KE = 540 - 235.2 = 304.8 J
KE = ½mv² + ½Iω²
ω = v/R
KE = ½mv² + ½I(v/R)² = ½(m + I/R²)v²
v = √(2KE / (m + I/R²))
v = √(2(304.8) / (4 + 0.5/0.5²)) = √101.6
v = 10.07968...