In a real system of levers, wheel or pulleys, the AMA (actual mechanical advantage) is less than the IMA (ideal mechanical advantage) because of the presence of friction.
In fact, the IMA and the AMA of a machine are defined as the ratio between the output force (the load) and the input force (the effort):

however, the difference is that the IMA does not take into account the presence of frictions, while the AMA does. As a result, the output force in the AMA is less than the output force in the IMA (because some energy is dissipated due to friction), and the AMA is less than the IMA.
Answer:
<h2>
3.94 kg</h2>
Explanation:
Given,
Force ( f ) = 30 N
Acceleration(a) = 7.6 m/s
Now, Let's find the mass of the ball
Using the Newton's second law of motion:
We get:

plug the value

Use the commutative property to reorder the terms

Swap the sides of the equation

Divide both sides of the equation by 7.6

Calculate

Hope this helps..
Best regards!!
Answer:
A) The particle will accelerate in the direction of point C.
Explanation:
As we know that
potential at points A, B,C and D as V_A, V_B, V_C, V_D and it is clear from the question that
V_A>V_B>V_C
And we know that flow is always from higher to lower potential (for positive charge due to positive potential energy).
So the charge will accelerate from B toward C.
Hence, the correct option is A.
Answer:
11.625
Explanation:
L = length of the ladder = 16 ft
= rate at which top of ladder slides down = - 3 ft/s
= rate at which bottom of ladder slides
y = distance of the top of ladder from the ground
x = distance of bottom of ladder from wall = 4 ft
Using Pythagorean theorem
L² = x² + y²
16² = 4² + y²
y = 15.5 ft
Also using Pythagorean theorem
L² = x² + y²
Taking derivative both side relative to "t"



= 11.625 ft/s
Answer:
Explanation:
Given
Object is thrown with a velocity of 
Acceleration due to gravity is -g (i.e. acting downward)
Vertical distance traveled by object is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement
at maximum height final velocity is zero


time taken to reach maximum height
using
v=u+at
0=9-gt
