Dependent on what you are measuring and what took you are using. Please be more specific.
Because it's the planet in our solar system with the shortest,
fastest orbit around the sun ... only 88 Earth days.
The people who named it didn't know that ... they still thought that
the sun and all the planets revolve around the Earth. But they did
see it zip from one side of the sun to the other, faster than any other
planet ... the result of having the shortest, fastest orbit of any planet.
At position of maximum height we know that the vertical component of its velocity will become zero
so the object will have only horizontal component of velocity
so at that instant the motion of object is along x direction
while if we check the acceleration of object then it is due to gravity
so the acceleration of object is vertically downwards
so it is along y axis
so here these two physical quantities are perpendicular to each other
so correct answer would be
<em>C)At the maximum height, the velocity and acceleration vectors are perpendicular to each other. </em>
The smallest parts that make up different types of matter are called atoms.
Atoms are tiny elements that are made up of literally everything on earth. <span />
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291