The answer is Hydrogyn bonding. It keeps the water molocules bonded together and in a liquid state, without it it'd be in a gashious state.
The electric and magnetic fields are generated by moving electric charges, the electric and magnetic fields interact with each other, the electric and magnetic fields produce forces on electric charges, the electric charges move in space.
<h3>
I hope it'll help you....</h3>
The answer would be 560,848,164 because the 0 at the start WOULDNT matter
Answer:
3.6667
Explanation:
<u>For helium gas:</u>
Using Boyle's law
Given ,
V₁ = 3.0 L
V₂ = 9.0 L
P₁ = 5.6 atm
P₂ = ?
Using above equation as:
<u>The pressure exerted by the helium gas in 9.0 L flask is 1.8667 atm</u>
<u>For Neon gas:</u>
Using Boyle's law
Given ,
V₁ = 4.5 L
V₂ = 9.0 L
P₁ = 3.6 atm
P₂ = ?
Using above equation as:
<u>The pressure exerted by the neon gas in 9.0 L flask is 1.8 atm</u>
<u>Thus total pressure = 1.8667 + 1.8 atm = 3.6667 atm.</u>
Letter C on the model titration curve corresponds to the point where pH equals the numerical value of pKa for HPr
<h3>What is a titration curve?</h3>
A titration curve is a graph of the pH of a solution against increasing volumes of an acid or a base that is added to the solution.
The pH of a solution is the negative logarithm to base ten of the hydrogen ion concentration and is a measure of the acidity or alkalinity of the solution.
The pKa is the acid dissociation constant of an acid solution.
In a titration of a strong acid and strong base, the pH at equivalence point is equal to the pKa of the acid.
The equivalence point is the point when equal moles of acids and base has reacted.
In the given titration curve, pH = pKa at point C.
In conclusion, for a titration curve of strong acid and base, at equivalence point, pH is equal to pKa of acid.
Learn more about equivalence point at: brainly.com/question/23502649
#SPJ1