Group the xs and the ys, 17+5= 22x 3+1=4y so y=4 and x=22.
To answer your question, this could be the possible answer and i hope you understand and interpret it correctly:
<span>[Integrate [0, 1/2] xcos(pi*x
let u=x so that du=dx
and v=intgral cos (xpi)dx
v=(1/pi)sin(pi*x)
integration by parts
uv-itgral[0,1/2]vdu just plug ins
(1/pi)sinpi*x]-(1/pi)itgrlsin(pi*x)dx from 0 to 1/2
(1/pi)x sinpi*x - (1/pi)[-(1/pi) cos pi*x] from 0 to 1/2
=(1/2pi)+(1/pi^2)[cos pi*x/2-cos 0]
=1/2pi - 1/2pi^2
=(pi-2)/2pi^2 ans</span>
Since DE is the perpendicular bisector of JL.
The perpendicular bisector is a line that divides a line segment into two equal parts. It also makes a right angle with the line segment. Each point on the perpendicular bisector is the same distance from each of the endpoints of the original line segment.
Since, a perpendicular bisector is a line that divides a line segment into two equal parts.
So, JK=KL. (which is not given in the option)
Since ED is a perpendicular bisector. So, each point on ED is the same distance from the endpoints of line segment JL.
So, EJ=EL.
Therefore, Option 1 is the correct answer.
Using trigonometric ratio, the value of x is 63.6°
<h3>Trigonometric Ratio</h3>
This is the ratios of sides of a right-angled triangle with respect to any of its acute angles are known as the trigonometric ratios of that particular angle.
Trigonometric ratio are often coined as SOHCAHTOA
In the given triangle, we need to find the value of x using trigonomtric ratio.
Since we have the value of adjacent and hypothenuse, we definitely need to use cosine
cosθ = adjacent / hypothenuse
adjacent = 4
hypothenuse = 9
Substituting the values into the equation;
cos θ = 4 / 9
cos θ = 0.444
θ = cos⁻¹ 0.4444
θ = 63.6°
Learn more on trigonometric ratio here;
brainly.com/question/24349828
#SPJ1