Cardiovascular exercise involves movement that gets your heart rate up to improve oxygen consumption in the body.
Examples of cardiovascular exercise (Aerobic) include:
Spinning
Running
Swimming
Walking
Hiking
Dancing
Kick Boxing
We could determine the acceleration using this formula

Given from the question v₀ = 23 m/s, v₁ = 0 (the car stops), t = 5 s
plug in the numbers



a = -4.6
The acceleration is -4.6 m/s²
The weight of a person increase when the elevator is going up.
<h3>
Weight of the person in the elevator</h3>
The weight of the person in the elevator is calculated as follows;
<h3>When the person is going up</h3>
F = ma + mg
F = m(a + g)
where;
- a is acceleration of the person
- g is acceleration due to gravity
<h3>When the person is going down</h3>
F = mg - ma
F = m(g - a)
Thus, the weight of a person increase when the elevator is going up.
Learn more about weight here: brainly.com/question/2337612
#SPJ1
The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
The correct answer is: <span>Unscrew one light, if the others remain on it is a parallel circuit.</span>