D. Carbon
Carbon cycle is an example of a biogeochemical cycle. <span>The biogeochemical cycles move through mainly </span>the biotic and abiotic components of the earth<span>, more elaborately the spheres -biospheres, lithosphere, hydrosphere and atmosphere regions of the ecosystem. These biogeochemical cycles, from its terminology and discernable word morphology- involves the biological, geological and chemical components that make out to complete an exact and purposed cycle. The purpose in these cycles are to maintain balance and to ensure the ongoing process of the living and non-living organisms in the environment. These cycles’ help to living organisms survive and thrive. One popular example is the water cycle. </span>
Answer:
11:1
Explanation:
At constant acceleration, an object's position is:
y = y₀ + v₀ t + ½ at²
Given y₀ = 0, v₀ = u, and a = -g:
y = u t − ½g t²
After 6 seconds, the ball reaches the maximum height (v = 0).
v = at + v₀
0 = (-g)(6) + u
u = 6g
Substituting:
y = 6g t − ½g t²
The displacement between t=0 and t=1 is:
Δy = [ 6g (1) − ½g (1)² ] − [ 6g (0) − ½g (0)² ]
Δy = 6g − ½g
Δy = 5½g
The displacement between t=6 and t=7 is:
Δy = [ 6g (7) − ½g (7)² ] − [ 6g (6) − ½g (6)² ]
Δy = (42g − 24½g) − (36g − 18g)
Δy = 17½g − 18g
Δy = -½g
So the ratio of the distances traveled is:
(5½g) / (½g)
11 / 1
The ratio is 11:1.
The Ozone layer is responsible for the absorption of harmful
radiation from the sun before it hits the surface or exterior structure of our
planet. It is known to be a belt of a known occurring gas, known as “ozone”
which is sealed around the Earth’s atmosphere. It serves as a shield, which absorbs
most of the sun’s ultraviolet radiation.
Answer:
The force exerted by the child is 38.25 Newton
Explanation:
We use the formula F=mxa (m=mass and a= aceleration):
F= 45kg x 0,85 m/s2=38, 25 kgxm/s2= <em>38, 25 N</em>
The spontaneous transformation of an unstable atomic nucleus into a lighter one, in which radiation is released in the form of alpha particles, beta particles, gamma rays, and other particles. The rate of decay of radioactive substances such as carbon 14 or uranium is measured in terms of their half-life .