Answer:
the radii of curvature is 30 cm.
Explanation:
given,
object is place at = 45 cm
image appears at = 90 cm
focal length = ?
refractive index = 1.5
radii of curvature = ?


f = 30 cm
using lens formula





R = 30 cm
hence, the radii of curvature is 30 cm.
Answer:
The speed is 1.52 m.
Explanation:
Given that,
Displacement =0.270 m
Distance = 0.130 m
Suppose a 0.321-kg mass is attached to a spring with a force constant of 13.3 N/m.
We need to calculate the angular velocity
Using formula of angular velocity

Put the value into the formula


We need to calculate the velocity
Using formula of velocity

Put the value into the formula


Hence, The speed is 1.52 m.
Answer:
Explanation:
Given that,
Bathysphere radius
r = 1.5m
Mass of bathysphere
M = 1.2 × 10⁴ kg
Constant speed of descending.
v = 1.2m/s
Resistive force
Fr = 1100N upward direction
Density of water
ρ = 1.03 × 10³kg/m³
The volume of the bathysphere can be calculated using
V = 4πr³ / 3
V = 4π × 1.5³ / 3
V = 14.14 m³
The Bouyant force can be calculated using
Fb = ρgV
Fb = 1.03 × 10³ × 9.81 × 14.14
Fb = 142,846.18 N
Buoyant force is acting upward
Weight of the bathysphere
W = mg
W = 1.2 × 10⁴ × 9.81
W = 117,720 N
Weight is acting downward
The net positive buoyant using resolving
Fb+ = Fb — W
Fb+ = 142,846.18 — 117,720
Fb+ = 25,126.18 N
The force acting downward is the weight of the submarine and it is equal to the positive buoyant force and the resistive force
W = Fb+ + Fr
W = 25,126.18 + 1100
W = 26,226.18
mg = 26,226.18
m = 26,226.18 / 9.81
m = 2673.4kg
Mass of submarine is 2673.4kg
Energy of motion is the literal definition of kinetic energy