Answer:
the horizontal distance is 4.355 meters
Explanation:
The computation of the horizontal distance while travelling in the air is shown below:
Data provided in the question is as follows
Velocity = u = 7.70 m/s
H = 1.60 m
R = horizontal direction
Based on the above information
As we know that
R = u × time
where,
Time = 
So,
= 
= 4.355 meters
hence, the horizontal distance is 4.355 meters
Answer:
Option A
Explanation:
This can be explained based on the conservation of energy.
The total mechanical energy of the system remain constant in the absence of any external force. Also, the total mechanical energy of the system is the sum of the potential energy and the kinetic energy associated with the system.
In case of two stones thrown from a cliff one vertically downwards the other vertically upwards, the overall gravitational potential energy remain same for the two stones as the displacement of the stones is same.
Therefore the kinetic energy and hence the speed of the two stones should also be same in order for the mechanical energy to remain conserved.
Answer:
t = 27.5
Explanation:

Well to solve for t we need to combine like terms and seperate t.
So 3+5= 8
8 - 220t = 0
We do +220 to both sides
8 = 220t
And now we divide 220 by 8 which is 27.5
Hence, t = 27.5
Answer:
Option (A)
Explanation:
Displacement of a particle on a velocity time graph is represented by the area between the line representing velocity and x-axis (time).
Displacement of a particle from t = 0 o t = 40 seconds = Area of ΔAOB
Area of triangle AOB = 
= 
= 80 m
Similarly, displacement of the particle from t = 40 to t = 80 seconds = Area of ΔBCD
Area of ΔBCD = 
= 80 m
Total displacement of the particle from t = 0 to t = 80 seconds,
= 80 + 80
= 160 m
Option (A) will be the answer.