<u>Answer:</u> The Fermi velocity of lead is 64.4 km/s.
<u>Explanation:</u>
To calculate the Fermi velocity, we use the equation:

where,
h = Planck's constant = 
= mass of electron = 
N = Number of atoms present in per volume of atom multiplied by number of electrons present in given atom = 
= Avogadro's number =
(When the mass is in kilograms)
V = Volume = 
M = molecular weight of lead = 207.2 g/mol
Putting values in above equation, we get:

(Conversion factor: 1 km = 1000 m)
Hence, the Fermi velocity of lead is 64.4 km/s
Answer:
The intensity level in the room is 63 dB
Explanation:
To calculate the intensity of sound in the room, we use the equation of definition of decibels
β = 10 log (I / Io) (1)
With “I” the sound intensity and “Io” the threshold intensity 1.0 10⁻⁻¹² W/m²
To calculate the intensity we will use the initial data and remember the power of the emitted sound is constant, in addition that the sound propagates in three-dimensional form or on a spherical surface
I = P/A ⇒ P = I A
The area of a sphere is 4 π r², where I can calculate of 1
β/10 = log (I/Io)
I / Io = 
I = Io 
I = 1 10⁻¹² 10⁽¹⁰⁰/¹⁰⁾ = 1 10⁻¹² 10¹⁰
I = 1.0 10⁻² W
With this we can calculate the intensity for a distance of 20 m
I = 1.0 10⁻² / ( 4π 20²)
I = 2.0 10⁻⁶ W/m²
We have already found the intensity at the point of interest, so we can calculate the intensity in decibels at this point with equation 1
β = 10 log(2.0 10⁻⁶ / 1.0 10⁻¹²)
β = 10 log ( 2 10⁶) = 10 6.3
β = 63 dB
The intensity level in the room is 63 dB
Aerobic dance<span> has its foundation in </span>dance<span>-inspired movements. It is a cardiovascular workout set to music in a group </span>exercise<span> setting. You do not have to memorize </span>dance<span> moves, as the classes are taught by instructors who verbally tell and visually show the </span>choreography<span>.</span>
Water, land. breath using skin and lungs
Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>