The answer is B because 13 m/s is a greater acceleration than 10 m/s in the same amount of time.
Answer:
<h3>The binding energy of sodium Na=<em>5.407791×10⁹J</em></h3>
Explanation:
<h3>Greetings !</h3>
Binding energy, amount of energy required to separate a particle from a system of particles or to disperse all the particles of the system. Binding energy is especially applicable to subatomic particles in atomic nuclei, to electrons bound to nuclei in atoms, and to atoms and ions bound together in crystals.
<h2>Formula : Eb=(Δm)c²</h2><h3>where:Eb= binding energy</h3><h3> .Δm= mass defect(kg)</h3><h3> c= speed of light 3.00×10⁸ms¯¹</h3><h2 /><h3>
<u>Given</u><u> </u><u>values</u></h3>
- m= 18.02597
- c=3.00×10⁸ms¯¹
<h3><u>required </u><u>value</u></h3>
<h3><u>Solution:</u></h3>
- Eb=(Δm)c²
- Eb=(18.02597)*(3.00*10⁸ms¯¹
- Eb=5.407791*10⁹J
Answer:
In chemical compounds, atoms tends to have the electron configuration of a noble gas.
Explanation:
The noble gases are unreactive because of their electron configurations. This noble gas neon has the electron configuration of 1s22s22p6 . It has a full outer shell and cannot incorporate any more electrons into the valence shell.
The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electron configuration of a noble gas. An exception to an octet of electrons is in the case of the first noble gas, helium, which only has two valence electrons.
Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. ... Refraction not only affects visible light rays, but all electromagnetic radiation, although in varying degrees.
So in short, the answer is D.
(My answer got deleted because it didnt explain which is dumb)
Answer:
Heat from the Sun causes water to evaporate from the surface of lakes and oceans. This turns the liquid water into water vapor in the atmosphere. Plants, too, help water get into the atmosphere through a process called transpiration! ... Water can also get into the atmosphere from snow and ice.
Most water vapor enters the atmosphere via evaporation and transpiration. Evaporation occurs when a single water molecule on a liquid water surface gains enough kinetic energy (often by solar radiation) to break the bond which holds the molecules together. Really Hopes this helps!
Explanation: