Answer:
Yes
Explanation:
Any transparent surface in practical is neither a perfect absorber of electromagnetic waves neither a perfect reflector. Generally all the transparent surfaces reflect some amount of irradiation and the other parts are absorbed and transmitted.
<u>That is given by as relation:</u>

where:
absorptivity which is defined as the ratio of the absorbed radiation to the total irradiation
reflectivity is defined as the ratio of reflected radiation to the total irradiation
transmittivity is defined as the ratio of total transmitted radiation to the total irradiation
Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:
Work = 5941 J
Explanation:
As we know that work done is given by the equation

here we know that

also we have

now from above formula we have


100 MHz = 100,000,000 Hz = 10^8<span> Hz
And using basic conversions between frequencies, I've determined that the wavelength is roughly 3 meters.</span>
Interference and diffraction are the phenomena that support only the wave theory of light. Options 2 and 3 are correct.
<h3 /><h3>What is the interference of waves?</h3>
The result of two or more wave trains flowing in opposite directions on a crossing or coinciding pathways. This phenomenon is known as the interference of waves.
The phenomenon of interference occurs when two wave pulses are traveling along a string toward each other.
The light wave hypothesis states that light behaves like a wave. Since light is an electromagnetic wave, it may be transmitted without a physical medium.
Light has magnetic and electric fields, much like electromagnetic waves do.
Transverse waves, such as those seen in light waves, oscillate in the same direction as the wave's path. A wave of light may experience interference as well as diffraction as a result of these properties.
All of the remaining options are the light phenomenon.
Hence, options 2 and 3 are correct.
To learn more about the interference of waves refer to the link;
brainly.com/question/16098226
#SPJ1